Menu Close

cos-x-2y-a-cos-x-y-b-The-maximum-value-of-sin-2-2x-3y-is-




Question Number 9515 by Joel575 last updated on 12/Dec/16
cos (x+2y) = a  cos (x+y) = b    The maximum value of   sin^2  (2x+3y)  is ...
cos(x+2y)=acos(x+y)=bThemaximumvalueofsin2(2x+3y)is
Answered by mrW last updated on 15/Dec/16
sin^2  (2x+3y)=[sin (x+2y+x+y)]^2   =[sin (x+2y)cos (x+y)+cos (x+2y)sin (x+y)]^2   =[b×sin (x+2y)+a×sin (x+y)]^2   =b^2 ×sin^2  (x+2y)+2ab×sin (x+2y)×sin (x+y)+a^2 ×sin^2 (x+y)  =b^2 (1−a^2 )+2ab×sin (x+2y)×sin (x+y)+a^2 (1−b^2 )  =a^2 +b^2 −2a^2 b^2 +2ab×sin (x+2y)×sin (x+y)  =a^2 +b^2 −2a^2 b^2 ±2ab(√((1−a^2 )(1−b^2 )))  max=a^2 +b^2 −2a^2 b^2 +2∣ab∣(√((1−a^2 )(1−b^2 )))  min=a^2 +b^2 −2a^2 b^2 −2∣ab∣(√((1−a^2 )(1−b^2 )))
sin2(2x+3y)=[sin(x+2y+x+y)]2=[sin(x+2y)cos(x+y)+cos(x+2y)sin(x+y)]2=[b×sin(x+2y)+a×sin(x+y)]2=b2×sin2(x+2y)+2ab×sin(x+2y)×sin(x+y)+a2×sin2(x+y)=b2(1a2)+2ab×sin(x+2y)×sin(x+y)+a2(1b2)=a2+b22a2b2+2ab×sin(x+2y)×sin(x+y)=a2+b22a2b2±2ab(1a2)(1b2)max=a2+b22a2b2+2ab(1a2)(1b2)min=a2+b22a2b22ab(1a2)(1b2)
Commented by Joel575 last updated on 12/Dec/16
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *