cos-x-4-x-2-cos-x-4-x-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 8728 by kuldeep singh raj last updated on 24/Oct/16 ∫cosx/4−x2∫cosx4−x2 Commented by prakash jain last updated on 24/Oct/16 Isit?∫cosx4−x2or∫cosx4−x2 Commented by prakash jain last updated on 25/Oct/16 ∫cosx4−x2=14[∫cosx2−xdx+∫cosx2+xdx]∫cosx2−xdx2−x=udu=−dx=−∫cos(2−u)udu=−∫cos2cosu+sin2sinuudu=−cos2∫cosuudu−sin2∫sinuudu=−cos2⋅Ci(u)−sin2⋅Si(u)=−cos2Ci(2−x)−sin2⋅Si(2−x)+CSimilarly∫cosx2+xdx;x+2=u,dx=du∫cos(u−2)udu=∫cos2cosuudu+∫sin2sinuudu=cos2⋅Ci(2+x)+sin2⋅Si(2+x)+CHence∫cosx4−x2dx=cos2{Ci(2+x)−Ci(2−x)}+sin2{Si(x+2)−Si(2−x)}+CNote∫sinxxdx=Si(x)∫cosxxdx=Ci(x) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-x-e-x-cos-e-x-e-x-dx-Next Next post: 0-x-xe-x-sin-e-x-e-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.