Menu Close

cos-x-4-x-2-cos-x-4-x-2-




Question Number 8728 by kuldeep singh raj last updated on 24/Oct/16
∫cos x/4−x^2   ∫((cos x)/(4−x^2 ))
cosx/4x2cosx4x2
Commented by prakash jain last updated on 24/Oct/16
Is it?  ∫ ((cos x)/(4−x^2 )) or ∫ ((cos x)/4)−x^2
Isit?cosx4x2orcosx4x2
Commented by prakash jain last updated on 25/Oct/16
∫ ((cos x)/(4−x^2 )) =(1/4)[∫ ((cos x)/(2−x))dx+∫ ((cos x)/(2+x))dx]  ∫ ((cos x)/(2−x))dx  2−x=u  du=−dx  =−∫((cos (2−u))/u)du  =−∫((cos 2cos u+sin 2sin u)/u)du  =−cos 2∫((cos u)/u)du−sin 2∫((sin u)/u)du  =−cos 2∙Ci(u)−sin 2∙Si(u)  =−cos 2Ci(2−x)−sin 2∙Si(2−x)+C  Similarly  ∫((cos x)/(2+x))dx; x+2=u, dx=du  ∫((cos (u−2))/u)du=∫((cos 2cos u)/u)du+∫((sin 2sin u)/u)du  =cos 2∙Ci(2+x)+sin 2∙Si(2+x)+C  Hence  ∫((cos x)/(4−x^2 ))dx=cos 2{Ci(2+x)−Ci(2−x)}+                           sin 2{Si(x+2)−Si(2−x)}+C  Note  ∫((sin x)/x)dx=Si(x)  ∫((cos x)/x)dx=Ci(x)
cosx4x2=14[cosx2xdx+cosx2+xdx]cosx2xdx2x=udu=dx=cos(2u)udu=cos2cosu+sin2sinuudu=cos2cosuudusin2sinuudu=cos2Ci(u)sin2Si(u)=cos2Ci(2x)sin2Si(2x)+CSimilarlycosx2+xdx;x+2=u,dx=ducos(u2)udu=cos2cosuudu+sin2sinuudu=cos2Ci(2+x)+sin2Si(2+x)+CHencecosx4x2dx=cos2{Ci(2+x)Ci(2x)}+sin2{Si(x+2)Si(2x)}+CNotesinxxdx=Si(x)cosxxdx=Ci(x)

Leave a Reply

Your email address will not be published. Required fields are marked *