Menu Close

cos-x-e-cos-x-sin-x-dx-




Question Number 136935 by metamorfose last updated on 27/Mar/21
∫cos(x)e^(cos(x)+sin(x)) dx=...?
$$\int{cos}\left({x}\right){e}^{{cos}\left({x}\right)+{sin}\left({x}\right)} {dx}=…? \\ $$
Answered by liberty last updated on 27/Mar/21
∫ cos x.e^(cos x) .e^(sin x)  dx =  by parts  { ((u=e^(cos x)   du=−sin x.e^(cos x)  dx)),((v=∫cos x.e^(sin x)  dx=∫d(e^(sin x) )=e^(sin x) )) :}  ∫ e^(cos x)  d(e^(sin x) ) = e^(cos x+sin x) +∫sin xe^(cos x+sin x)  dx  (1−sin x)∫cos x.e^(cos x+sin x)  dx = e^(cos x+sin x)   ∫ cos x.e^(cos x+sin x)  dx = ((e^(cos x+sin x)  +C)/(1−sin x))
$$\int\:\mathrm{cos}\:\mathrm{x}.\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} .\mathrm{e}^{\mathrm{sin}\:\mathrm{x}} \:\mathrm{dx}\:= \\ $$$$\mathrm{by}\:\mathrm{parts} \begin{cases}{\mathrm{u}=\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} \: \mathrm{du}=−\mathrm{sin}\:\mathrm{x}.\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} \:\mathrm{dx}}\\{\mathrm{v}=\int\mathrm{cos}\:\mathrm{x}.\mathrm{e}^{\mathrm{sin}\:\mathrm{x}} \:\mathrm{dx}=\int\mathrm{d}\left(\mathrm{e}^{\mathrm{sin}\:\mathrm{x}} \right)=\mathrm{e}^{\mathrm{sin}\:\mathrm{x}} }\end{cases} \\ $$$$\int\:\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} \:\mathrm{d}\left(\mathrm{e}^{\mathrm{sin}\:\mathrm{x}} \right)\:=\:\mathrm{e}^{\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}} +\int\mathrm{sin}\:\mathrm{xe}^{\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}} \:\mathrm{dx} \\ $$$$\left(\mathrm{1}−\mathrm{sin}\:\mathrm{x}\right)\int\mathrm{cos}\:\mathrm{x}.\mathrm{e}^{\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}} \:\mathrm{dx}\:=\:\mathrm{e}^{\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}} \\ $$$$\int\:\mathrm{cos}\:\mathrm{x}.\mathrm{e}^{\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}} \:\mathrm{dx}\:=\:\frac{\mathrm{e}^{\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}} \:+\mathrm{C}}{\mathrm{1}−\mathrm{sin}\:\mathrm{x}} \\ $$
Commented by metamorfose last updated on 28/Mar/21
Sir , i can′t understand the ligne 4
$${Sir}\:,\:{i}\:{can}'{t}\:{understand}\:{the}\:{ligne}\:\mathrm{4}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *