Menu Close

cos-x-sin-x-2tan-x-1-cos-x-2-0-




Question Number 135679 by liberty last updated on 15/Mar/21
(cos x−sin x)(2tan x+(1/(cos x)))+2 = 0
(cosxsinx)(2tanx+1cosx)+2=0
Answered by EDWIN88 last updated on 15/Mar/21
Let tan (x/2) = t → { ((cos x=((1−t)/(1+t^2 )))),((sin x=((2t)/(1+t^2 )))),((tan x=((2t)/(1−t^2 )))) :}  ⇔ (((1−t^2 )/(1+t^2 ))−((2t)/(1+t^2 )))(((4t)/(1−t^2 ))+((1+t^2 )/(1−t)))+2 = 0  ⇒(1−t^2 −2t).(t^2 +4t+1)+2(1−t^4 ) = 0  ⇒3t^4 −t^2 +6t^3 −2t+9t^2 −3 = 0  ⇒t^2 (3t^2 −1)+2t(3t^2 −1)+3(3t^2 −1) = 0  ⇒(3t^2 −1)(t^2 +2t+3) = 0    { ((t^2 +2t+3 = 0 →has complex roots)),((3t^2 −1=0⇒t = ± (1/( (√3))))) :}  ⇔ tan ((x/2)) = ± (1/( (√3))) ; (x/2) = nπ ± (π/6)  ⇒ x = 2nπ ± (π/3) ; n∈Z
Lettanx2=t{cosx=1t1+t2sinx=2t1+t2tanx=2t1t2(1t21+t22t1+t2)(4t1t2+1+t21t)+2=0(1t22t).(t2+4t+1)+2(1t4)=03t4t2+6t32t+9t23=0t2(3t21)+2t(3t21)+3(3t21)=0(3t21)(t2+2t+3)=0{t2+2t+3=0hascomplexroots3t21=0t=±13tan(x2)=±13;x2=nπ±π6x=2nπ±π3;nZ

Leave a Reply

Your email address will not be published. Required fields are marked *