cos-x-sin-x-2tan-x-1-cos-x-2-0- Tinku Tara June 3, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 135679 by liberty last updated on 15/Mar/21 (cosx−sinx)(2tanx+1cosx)+2=0 Answered by EDWIN88 last updated on 15/Mar/21 Lettanx2=t→{cosx=1−t1+t2sinx=2t1+t2tanx=2t1−t2⇔(1−t21+t2−2t1+t2)(4t1−t2+1+t21−t)+2=0⇒(1−t2−2t).(t2+4t+1)+2(1−t4)=0⇒3t4−t2+6t3−2t+9t2−3=0⇒t2(3t2−1)+2t(3t2−1)+3(3t2−1)=0⇒(3t2−1)(t2+2t+3)=0{t2+2t+3=0→hascomplexroots3t2−1=0⇒t=±13⇔tan(x2)=±13;x2=nπ±π6⇒x=2nπ±π3;n∈Z Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-e-i-e-i-2k-given-that-k-0-1-2-Next Next post: prove-that-arg-z1z2-arg-z1-arg-z2-arg-z1-z2-arg-z1-arg-z2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.