Menu Close

CosA-CosB-CosC-1-4Cos-B-C-2-Cos-C-A-2-Cos-A-B-2-1-4Cos-A-4-Cos-B-4-Cos-C-4-prove-that-if-A-B-C-




Question Number 67083 by lalitchand last updated on 22/Aug/19
CosA+CosB+CosC=1+4Cos(((B+C)/2)).Cos(((C+A)/2)).Cos(((A+B)/2))=1+4Cos(((Π−A)/4)).Cos(((Π−B)/4)).Cos(((Π−C)/4))  prove that if A+B+C=Π
CosA+CosB+CosC=1+4Cos(B+C2).Cos(C+A2).Cos(A+B2)=1+4Cos(ΠA4).Cos(ΠB4).Cos(ΠC4)provethatifA+B+C=Π
Answered by Tanmay chaudhury last updated on 23/Aug/19
LHS  2cos(((A+B)/2))cos(((A−B)/2))+1−2sin^2 (C/2)  look  cos2α=cos^2 α−sin^2 α                         =1−2sin^2 α   or  2cos^2 α−1  now ((A+B)/2)=((π−C)/2)=(π/2)−(C/2)  so cos(((A+B)/2))=cos((π/2)−(C/2))=sin(C/2)  back to problem  2sin(C/2)cos(((A−B)/2))+1−2sin^2 (C/2)  2sin(C/2){cos(((A−B)/2))−sin((C/2))}+1  2cos(((A+B)/2)){cos(((A−B)/2))−cos(((A+B)/2))}+1  =2cos(((A+B)/2)).2sin((A/2))sin((B/2))+1  =4cos(((A+B)/2))cos(((B+C)/2))cos(((A+C)/2))+1
LHS2cos(A+B2)cos(AB2)+12sin2C2lookcos2α=cos2αsin2α=12sin2αor2cos2α1nowA+B2=πC2=π2C2socos(A+B2)=cos(π2C2)=sinC2backtoproblem2sinC2cos(AB2)+12sin2C22sinC2{cos(AB2)sin(C2)}+12cos(A+B2){cos(AB2)cos(A+B2)}+1=2cos(A+B2).2sin(A2)sin(B2)+1=4cos(A+B2)cos(B+C2)cos(A+C2)+1

Leave a Reply

Your email address will not be published. Required fields are marked *