Menu Close

CosA-CosB-CosC-1-4Cos-B-C-2-Cos-C-A-2-Cos-A-B-2-1-4Cos-A-4-Cos-B-4-Cos-C-4-prove-that-if-A-B-C-




Question Number 67083 by lalitchand last updated on 22/Aug/19
CosA+CosB+CosC=1+4Cos(((B+C)/2)).Cos(((C+A)/2)).Cos(((A+B)/2))=1+4Cos(((Π−A)/4)).Cos(((Π−B)/4)).Cos(((Π−C)/4))  prove that if A+B+C=Π
$$\mathrm{CosA}+\mathrm{CosB}+\mathrm{CosC}=\mathrm{1}+\mathrm{4Cos}\left(\frac{\mathrm{B}+\mathrm{C}}{\mathrm{2}}\right).\mathrm{Cos}\left(\frac{\mathrm{C}+\mathrm{A}}{\mathrm{2}}\right).\mathrm{Cos}\left(\frac{\mathrm{A}+\mathrm{B}}{\mathrm{2}}\right)=\mathrm{1}+\mathrm{4Cos}\left(\frac{\Pi−\mathrm{A}}{\mathrm{4}}\right).\mathrm{Cos}\left(\frac{\Pi−\mathrm{B}}{\mathrm{4}}\right).\mathrm{Cos}\left(\frac{\Pi−\mathrm{C}}{\mathrm{4}}\right) \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{if}\:\mathrm{A}+\mathrm{B}+\mathrm{C}=\Pi \\ $$
Answered by Tanmay chaudhury last updated on 23/Aug/19
LHS  2cos(((A+B)/2))cos(((A−B)/2))+1−2sin^2 (C/2)  look  cos2α=cos^2 α−sin^2 α                         =1−2sin^2 α   or  2cos^2 α−1  now ((A+B)/2)=((π−C)/2)=(π/2)−(C/2)  so cos(((A+B)/2))=cos((π/2)−(C/2))=sin(C/2)  back to problem  2sin(C/2)cos(((A−B)/2))+1−2sin^2 (C/2)  2sin(C/2){cos(((A−B)/2))−sin((C/2))}+1  2cos(((A+B)/2)){cos(((A−B)/2))−cos(((A+B)/2))}+1  =2cos(((A+B)/2)).2sin((A/2))sin((B/2))+1  =4cos(((A+B)/2))cos(((B+C)/2))cos(((A+C)/2))+1
$${LHS} \\ $$$$\mathrm{2}{cos}\left(\frac{{A}+{B}}{\mathrm{2}}\right){cos}\left(\frac{{A}−{B}}{\mathrm{2}}\right)+\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \frac{{C}}{\mathrm{2}} \\ $$$${look}\:\:{cos}\mathrm{2}\alpha={cos}^{\mathrm{2}} \alpha−{sin}^{\mathrm{2}} \alpha \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \alpha\:\:\:{or}\:\:\mathrm{2}{cos}^{\mathrm{2}} \alpha−\mathrm{1} \\ $$$${now}\:\frac{{A}+{B}}{\mathrm{2}}=\frac{\pi−{C}}{\mathrm{2}}=\frac{\pi}{\mathrm{2}}−\frac{{C}}{\mathrm{2}} \\ $$$${so}\:{cos}\left(\frac{{A}+{B}}{\mathrm{2}}\right)={cos}\left(\frac{\pi}{\mathrm{2}}−\frac{{C}}{\mathrm{2}}\right)={sin}\frac{{C}}{\mathrm{2}} \\ $$$${back}\:{to}\:{problem} \\ $$$$\mathrm{2}{sin}\frac{{C}}{\mathrm{2}}{cos}\left(\frac{{A}−{B}}{\mathrm{2}}\right)+\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \frac{{C}}{\mathrm{2}} \\ $$$$\mathrm{2}{sin}\frac{{C}}{\mathrm{2}}\left\{{cos}\left(\frac{{A}−{B}}{\mathrm{2}}\right)−{sin}\left(\frac{{C}}{\mathrm{2}}\right)\right\}+\mathrm{1} \\ $$$$\mathrm{2}{cos}\left(\frac{{A}+{B}}{\mathrm{2}}\right)\left\{{cos}\left(\frac{{A}−{B}}{\mathrm{2}}\right)−{cos}\left(\frac{{A}+{B}}{\mathrm{2}}\right)\right\}+\mathrm{1} \\ $$$$=\mathrm{2}{cos}\left(\frac{{A}+{B}}{\mathrm{2}}\right).\mathrm{2}{sin}\left(\frac{{A}}{\mathrm{2}}\right){sin}\left(\frac{{B}}{\mathrm{2}}\right)+\mathrm{1} \\ $$$$=\mathrm{4}{cos}\left(\frac{{A}+{B}}{\mathrm{2}}\right){cos}\left(\frac{{B}+{C}}{\mathrm{2}}\right){cos}\left(\frac{{A}+{C}}{\mathrm{2}}\right)+\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *