cosx-x-2-1-dx-don-t-use-feynmann-trick- Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 138315 by LUFFY last updated on 12/Apr/21 ∫−∞+∞cosx(x2+1)dxdon′tusefeynmanntrick Answered by Ñï= last updated on 12/Apr/21 I(t)=∫−∞+∞cos(tx)x2+1dxI(t)′=−∫−∞+∞xsin(tx)x2+1dx=−∫−∞+∞(x2+1−1)sin(tx)x(x2+1)dx=−∫−∞+∞sin(tx)x−sin(tx)x(x2+1)dx=−π+∫−∞+∞sin(tx)x(x2+1)dxI(t)″=∫−∞+∞cos(tx)x2+1dx=I(t)I(t)″−I(t)=0⇒I(t)=C1ex+C2e−xI(t)′=C1ex−C2e−x{I(0)=πI(0)′=−π⇒C1=0C2=π⇒I(t)=πe−x⇒∫−∞+∞cosxx2+1dx=I(1)=πe Answered by Ñï= last updated on 12/Apr/21 I=∫−∞+∞cosxx2+1dx=ℜ∫−∞+∞eixx2+1dx=ℜ[2πiRes(eixx2+1,i)]=ℜ[2πilimx→ix−ix2+1eix]=ℜ[2πi⋅e−12i]=πe Answered by Ñï= last updated on 12/Apr/21 I(t)=∫0+∞cos(tx)x2+1dxL[I(t)]=∫0∞dx∫0+∞cos(tx)x2+1e−stdt=∫0∞L[cos(tx)(s)]x2+1dx=∫0∞ss2+x2⋅dxx2+1=ss2−1[∫0∞dxx2+1dx−∫0∞sdxx2+s2]=πs2(s2−1)−π2(s2−1)I(t)=L−1[πs2(s2−1)−π2(s2−1)]=π2L−1{ss2−1}−π2L−1{1s2−1}=π2(cosht−sinht)=π2e−t⇒∫−∞+∞cosxx2+1dx=2I(1)=πe Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: A-soma-de-um-numero-com-seu-sextuplo-e-ingual-a-280-Quale-e-o-numero-Next Next post: Question-7246 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.