Menu Close

cosx-x-2-1-dx-don-t-use-feynmann-trick-




Question Number 138315 by LUFFY last updated on 12/Apr/21
∫_(−∞) ^( +∞) ((cosx)/((x^2 +1)))dx  don′t use feynmann trick
+cosx(x2+1)dxdontusefeynmanntrick
Answered by Ñï= last updated on 12/Apr/21
I(t)=∫_(−∞) ^(+∞) ((cos (tx))/(x^2 +1))dx  I(t)′=−∫_(−∞) ^(+∞) ((xsin (tx))/(x^2 +1))dx=−∫_(−∞) ^(+∞) (((x^2 +1−1)sin (tx))/(x(x^2 +1)))dx  =−∫_(−∞) ^(+∞) ((sin (tx))/x)−((sin (tx))/(x(x^2 +1)))dx=−π+∫_(−∞) ^(+∞) ((sin (tx))/(x(x^2 +1)))dx  I(t)′′=∫_(−∞) ^(+∞) ((cos (tx))/(x^2 +1))dx=I(t)  I(t)′′−I(t)=0  ⇒    I(t)=C_1 e^x +C_2 e^(−x)            I(t)′=C_1 e^x −C_2 e^(−x)    { ((I(0)=π)),((I(0)′=−π)) :}  ⇒C_1 =0      C_2 =π  ⇒I(t)=πe^(−x)   ⇒∫_(−∞) ^(+∞) ((cos x)/(x^2 +1))dx=I(1)=(π/e)
I(t)=+cos(tx)x2+1dxI(t)=+xsin(tx)x2+1dx=+(x2+11)sin(tx)x(x2+1)dx=+sin(tx)xsin(tx)x(x2+1)dx=π++sin(tx)x(x2+1)dxI(t)=+cos(tx)x2+1dx=I(t)I(t)I(t)=0I(t)=C1ex+C2exI(t)=C1exC2ex{I(0)=πI(0)=πC1=0C2=πI(t)=πex+cosxx2+1dx=I(1)=πe
Answered by Ñï= last updated on 12/Apr/21
I=∫_(−∞) ^(+∞) ((cos x)/(x^2 +1))dx=ℜ∫_(−∞) ^(+∞) (e^(ix) /(x^2 +1))dx=ℜ[2πiRes((e^(ix) /(x^2 +1)),i)]  =ℜ[2πilim_(x→i) ((x−i)/(x^2 +1))e^(ix) ]=ℜ[2πi∙(e^(−1) /(2i))]=(π/e)
I=+cosxx2+1dx=+eixx2+1dx=[2πiRes(eixx2+1,i)]=[2πilimxixix2+1eix]=[2πie12i]=πe
Answered by Ñï= last updated on 12/Apr/21
I(t)=∫_0 ^(+∞) ((cos (tx))/(x^2 +1))dx  L[I(t)]=∫_0 ^∞ dx∫_0 ^(+∞) ((cos (tx))/(x^2 +1))e^(−st) dt  =∫_0 ^∞ ((L[cos (tx)(s)])/(x^2 +1))dx  =∫_0 ^∞ (s/(s^2 +x^2 ))∙(dx/(x^2 +1))  =(s/(s^2 −1))[∫_0 ^∞ (dx/(x^2 +1))dx−∫_0 ^∞ ((sdx)/(x^2 +s^2 ))]  =((πs)/(2(s^2 −1)))−(π/(2(s^2 −1)))  I(t)=L^(−1) [((πs)/(2(s^2 −1)))−(π/(2(s^2 −1)))]  =(π/2)L^(−1) {(s/(s^2 −1))}−(π/2)L^(−1) {(1/(s^2 −1))}  =(π/2)(cosh t−sinh t)  =(π/2)e^(−t)   ⇒∫_(−∞) ^(+∞) ((cos x)/(x^2 +1))dx=2I(1)=(π/e)
I(t)=0+cos(tx)x2+1dxL[I(t)]=0dx0+cos(tx)x2+1estdt=0L[cos(tx)(s)]x2+1dx=0ss2+x2dxx2+1=ss21[0dxx2+1dx0sdxx2+s2]=πs2(s21)π2(s21)I(t)=L1[πs2(s21)π2(s21)]=π2L1{ss21}π2L1{1s21}=π2(coshtsinht)=π2et+cosxx2+1dx=2I(1)=πe

Leave a Reply

Your email address will not be published. Required fields are marked *