cot-cosec-k-then-find-cosec-cot-and-also-find-cot- Tinku Tara June 3, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 11844 by minakshidahaval0202@gmail.co. last updated on 02/Apr/17 cotα+cosecα=kthenfindcosecα−cotαandalsofindcotα Answered by sma3l2996 last updated on 02/Apr/17 wehave(i):cotα+cosecα=cosαsinα+1sinα=k=cosα+1sinα=(cosα+1)(cosα−1)sinα(cosα−1)=−sin2αsinα(cosα−1)=11sinα−cosαsinα=1cosecα−cotα=k(ii):cosecα−cotα=1kletdo(i)−(ii):2cotα=k−1kcotα=k2−1k Commented by sma3l2996 last updated on 02/Apr/17 Imeancotα=k2−12k Answered by ajfour last updated on 02/Apr/17 cosec2α−cot2α=1(cosecα−cotα)(cosecα+cotα)=1(cosecα−cotα)(k)=1cosecα−cotα=1k…(ii)andascosecα+cotα=k…(i)(i)−(ii)gives2cotα=k−1kcotα=k2−12k. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-142912Next Next post: lim-x-1-sin-x-1-2x-x-2-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.