Menu Close

Could-someone-help-me-on-this-question-Knowing-that-the-area-of-a-circle-segment-is-given-by-A-R-2-sin-2-Where-A-7m-2-R-2-28-pi-What-is-the-best-answer-for-the-angle-value-degree-a-85




Question Number 72841 by indalecioneves last updated on 03/Nov/19
Could someone help me on this question?  Knowing that the area of a circle segment is given by A=R^2 (θ−sinθ)/2. Where A=7m^2 ; R^2 =((28)/π).  What is the best answer for the angle value (degree)  a) 85°<θ<90°  b) 95°<θ<100°  c) 105°<θ<110°  d) 115°<θ<120°  e) 125°<θ<135°
Couldsomeonehelpmeonthisquestion?KnowingthattheareaofacirclesegmentisgivenbyA=R2(θsinθ)/2.WhereA=7m2;R2=28π.Whatisthebestanswerfortheanglevalue(degree)a)85°<θ<90°b)95°<θ<100°c)105°<θ<110°d)115°<θ<120°e)125°<θ<135°
Commented by MJS last updated on 04/Nov/19
there′s information missing  what is m? if m is just a constant factor:  7m^2 =((28)/(2π))(θ−sin θ)  the area of the circle is R^2 π=28  ⇒  0≤7m^2 ≤28  0≤m^2 ≤4  area≥0 ⇒ m≥0  0≤m≤2  ⇒  0≤θ−sin θ≤2π  ⇒  0≤θ≤2π  in degree 0≤θ≤360
theresinformationmissingwhatism?ifmisjustaconstantfactor:7m2=282π(θsinθ)theareaofthecircleisR2π=2807m2280m24area0m00m20θsinθ2π0θ2πindegree0θ360
Commented by indalecioneves last updated on 09/Nov/19
Hello, Sir!  Thanks for attention.  You can only considerer it 1=(2/π).(θ−sinθ), because m^2  means only meters per square.
Hello,Sir!Thanksforattention.Youcanonlyconsidererit1=2π.(θsinθ),becausem2meansonlymeterspersquare.
Commented by MJS last updated on 09/Nov/19
you should have written R^2 =((28)/π)m^2  then it  would have been clear
youshouldhavewrittenR2=28πm2thenitwouldhavebeenclear
Answered by MJS last updated on 09/Nov/19
(1)  7=((28)/(2π))(θ−sin θ)  (2)  generally 0≤θ<2π and −1≤sin θ ≤1  (3)  the area A=7 is a quarter of the area of  the circle which is R^2 π=28    (1)  ⇒ sin θ =θ−(π/2)  (2)  −1≤θ−(π/2)≤1 ⇔ (π/2)−1≤θ≤(π/2)+1       but 0≤θ ⇒ 0≤θ≤(π/2)+1  (3)  ⇒ (π/2)<θ<π       but θ≤(π/2)+1 ⇒ (π/2)<θ≤(π/2)+1       or 90°<θ≤147.30°    we can easily calculate the area of a segment  with θ=((2π)/3) (=120°)  ((28)/(2π))(((2π)/3)−((√3)/2))=((28)/3)−((7(√3))/π)≈5.47  ⇒ θ>((2π)/3)  ⇒ ((2π)/3)<θ≤(π/2)+1 or 120°<θ≤147.30°  of the given options (e) is the right one
(1)7=282π(θsinθ)(2)generally0θ<2πand1sinθ1(3)theareaA=7isaquarteroftheareaofthecirclewhichisR2π=28(1)sinθ=θπ2(2)1θπ21π21θπ2+1but0θ0θπ2+1(3)π2<θ<πbutθπ2+1π2<θπ2+1or90°<θ147.30°wecaneasilycalculatetheareaofasegmentwithθ=2π3(=120°)282π(2π332)=28373π5.47θ>2π32π3<θπ2+1or120°<θ147.30°ofthegivenoptions(e)istherightone
Commented by indalecioneves last updated on 12/Nov/19
Thank you, Sir.  God bless you!
Thankyou,Sir.Godblessyou!

Leave a Reply

Your email address will not be published. Required fields are marked *