Menu Close

D-0-pi-2-sin-4-x-cos-5-x-dx-




Question Number 134708 by bramlexs22 last updated on 06/Mar/21
D = ∫_0 ^( π/2) sin^4 x cos^5 x dx
D=0π/2sin4xcos5xdx
Answered by john_santu last updated on 06/Mar/21
D = ∫_0 ^( π/2) sin^4 x(1−sin^2 x)^2  cos x dx  let u= sin x ,  determinant (((u=1(upper limit))),((u=0 (lower limit))))  D = ∫_0 ^( 1) u^4 (u^4 −2u^2 +1) du   D = ∫_0 ^( 1) (u^8 −2u^6 +u^4 )du  D = [(u^9 /9)−((2u^7 )/7) +(u^5 /5) ]_0 ^1   D = (1/9)−(2/7)+(1/5) = ((35−90+63)/(315))  D = (8/(315)) •
D=0π/2sin4x(1sin2x)2cosxdxletu=sinx,u=1(upperlimit)u=0(lowerlimit)D=01u4(u42u2+1)duD=01(u82u6+u4)duD=[u992u77+u55]01D=1927+15=3590+63315D=8315
Answered by Dwaipayan Shikari last updated on 06/Mar/21
∫_0 ^(π/2) sin^4 x cos^5 x dx  ,  Generally ∫_0 ^(π/2) sin^m x cos^n x dx=((Γ(((m+1)/2))Γ(((n+1)/2)))/(2Γ(((m+n)/2)+1)))  =((Γ((5/2))Γ(3))/(2Γ(((11)/2))))=(((3/4)(√π).2)/(2.(9/2).(7/2).(5/2).(3/4)(√π)))=(8/(315))
0π2sin4xcos5xdx,Generally0π2sinmxcosnxdx=Γ(m+12)Γ(n+12)2Γ(m+n2+1)=Γ(52)Γ(3)2Γ(112)=34π.22.92.72.52.34π=8315

Leave a Reply

Your email address will not be published. Required fields are marked *