D-0-pi-2-sin-4-x-cos-5-x-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 134708 by bramlexs22 last updated on 06/Mar/21 D=∫0π/2sin4xcos5xdx Answered by john_santu last updated on 06/Mar/21 D=∫0π/2sin4x(1−sin2x)2cosxdxletu=sinx,u=1(upperlimit)u=0(lowerlimit)D=∫01u4(u4−2u2+1)duD=∫01(u8−2u6+u4)duD=[u99−2u77+u55]01D=19−27+15=35−90+63315D=8315∙ Answered by Dwaipayan Shikari last updated on 06/Mar/21 ∫0π2sin4xcos5xdx,Generally∫0π2sinmxcosnxdx=Γ(m+12)Γ(n+12)2Γ(m+n2+1)=Γ(52)Γ(3)2Γ(112)=34π.22.92.72.52.34π=8315 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-69173Next Next post: difference-of-two-complementary-angles-is-102-find-two-angles- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.