Menu Close

d-2-y-dx-2-c-2-x-2-y-y-a-x-0-




Question Number 73495 by ajfour last updated on 13/Nov/19
(d^2 y/dx^2 )=c^2 x^2 y     (y=a , x=0 )
d2ydx2=c2x2y(y=a,x=0)
Answered by mind is power last updated on 13/Nov/19
t=x^2   (dy/dx)=(dy/dt).(dt/dx)=2x(dy/dt)  (d^2 y/dx^2 )=2(dy/dt)+2x.(d^2 y/dt^2 ).(dt/dx)=2(dy/dt)+4x^2 (d^2 y/dt^2 )  ⇔4x^2 (d^2 y/dt^2 )+2(dy/dt)=c^2 x^2 y  ⇔4t(d^2 y/dt^2 )+2(dy/dt)−c^2 ty(t)=0  ⇔t^2 (d^2 y/dt^2 )+(1/2)t(dy/dt)−(c^2 /4)t^2 y(t)=0  Bessel generalise Equation  is x^2 (d^2 y/dx^2 )+(2p+1)x(dy/dx)+(a^2 x^(2r) +β^2 )y=0  solution is y=x^(−p) [C_1 J_(q/r ) (((ax^r )/r))+C_2 Y_(q/r) ((α/r)x^r )]  q=(√(p^2 −β^2 ))  in our case r=1  a=(((ci)/2))  p=−(1/4)  q=(√((1/(16))−0))=(1/4)  y=t^(1/4) [C_1 J_(1/4) (((ci)/2)t)+C_2 Y_(1/4) (((cit)/2))]  J  first bassel function,Y  2nd espace of bassel equation  y(x)=Y(t)∣_(t=(√x))
t=x2dydx=dydt.dtdx=2xdydtd2ydx2=2dydt+2x.d2ydt2.dtdx=2dydt+4x2d2ydt24x2d2ydt2+2dydt=c2x2y4td2ydt2+2dydtc2ty(t)=0t2d2ydt2+12tdydtc24t2y(t)=0BesselgeneraliseEquationisx2d2ydx2+(2p+1)xdydx+(a2x2r+β2)y=0solutionisy=xp[C1Jq/r(axrr)+C2Yq/r(αrxr)]q=p2β2inourcaser=1a=(ci2)p=14q=1160=14y=t14[C1J14(ci2t)+C2Y14(cit2)]Jfirstbasselfunction,Y2ndespaceofbasselequationy(x)=Y(t)t=x
Commented by ajfour last updated on 13/Nov/19
Thanks ′Powerful Mind′ , i′ll  look into ′Erwin Kreyszig′  (higher engg. maths book) and  try to understand your sol^n ..
ThanksPowerfulMind,illlookintoErwinKreyszig(higherengg.mathsbook)andtrytounderstandyoursoln..
Commented by mind is power last updated on 13/Nov/19
y′re Welcom   i had a pdf of  differential equation  if i find it i tell you the Names
yreWelcomihadapdfofdifferentialequationififindititellyoutheNames

Leave a Reply

Your email address will not be published. Required fields are marked *