Menu Close

d-dx-tan-1-4x-1-4x-2-or-d-dx-tan-1-2tan-where-2x-sin-which-comes-later-if-done-considering-2x-sin-please-help-




Question Number 67960 by aseer imad last updated on 02/Sep/19
(d/dx)[tan^(−1) ((4x)/( (√(1−4x^2 ))))]  or  (d/dx)tan^(−1) (2tanθ)       [where 2x=sinθ ]     which comes later if done considering  2x=sinθ  please help
ddx[tan14x14x2]orddxtan1(2tanθ)[where2x=sinθ]whichcomeslaterifdoneconsidering2x=sinθpleasehelp
Commented by Prithwish sen last updated on 02/Sep/19
Let y = tan^(−1) ((4x)/( (√(1−4x^2 ))))  Now considering  2x = sinθ  diff. w.r.t θ we get (dx/dθ) =(1/2)Cosθ =(1/2)(√(1−4x^2 ))   Now the original expression turns out  y=tan^(−1) (2tanθ) again diff. w.r.t  θ  (dy/dθ) = (1/(1+4tan^2 θ)).2sec^2 θ =(2/(1+12x^2 ))  ∴((dy )/dx) = (dy/d𝛉).(d𝛉/dx)  = (4/((1+12x^2 )(√(1−4x^2 ))))  It can be done in direct method  (dy/dx) = (1/(1+(((4x)/( (√(1−4x^2 )))))^2 )).((4(√(1−4x^2 ))+4x.((8x)/(2(√(1−4x^2 )))))/(1−4x^2 ))  =((1−4x^2 )/(1−4x^2 +16x^2 )).((4(1−4x^2 )+16x^2 )/((1−4x^2 )(√(1−4x^2 ))))   =(4/((1+12x^2 )(√(1−4x^2 ))))   please check.
Lety=tan14x14x2Nowconsidering2x=sinθdiff.w.r.tθwegetdxdθ=12Cosθ=1214x2Nowtheoriginalexpressionturnsouty=tan1(2tanθ)againdiff.w.r.tθdydθ=11+4tan2θ.2sec2θ=21+12x2dydx=dydθ.dθdx=4(1+12x2)14x2Itcanbedoneindirectmethoddydx=11+(4x14x2)2.414x2+4x.8x214x214x2=14x214x2+16x2.4(14x2)+16x2(14x2)14x2=4(1+12x2)14x2pleasecheck.
Commented by MJS last updated on 02/Sep/19
(d/dx)[arctan u(x)]=((u′(x))/((u(x))^2 +1))  u(x)=((4x)/( (√(1−4x^2 ))))  u′(x)=(4/( (√((1−4x^2 )^3 ))))  (u(x))^2 +1=((12x^2 +1)/(1−4x^2 ))  ((u′(x))/((u(x))^2 +1))=(4/((12x^2 +1)(√(1−4x^2 ))))
ddx[arctanu(x)]=u(x)(u(x))2+1u(x)=4x14x2u(x)=4(14x2)3(u(x))2+1=12x2+114x2u(x)(u(x))2+1=4(12x2+1)14x2

Leave a Reply

Your email address will not be published. Required fields are marked *