Menu Close

De-montrer-que-n-1-1-n-1-n-4-1-2-pi-2-sin-pi-2-cosh-pi-2-sinh-pi-2-cos-pi-2-sinh-2-pi-2-sin-2-pi-2-




Question Number 133910 by Ar Brandon last updated on 25/Feb/21
    De^� montrer que;  Σ_(n=1) ^∞ (((−1)^n )/(1+n^4 ))=(1/2)[(π/( (√2))) ((sin((π/( (√2))))cosh((π/( (√2))))+sinh((π/( (√2))))cos((π/( (√2)))))/(sinh^2 ((π/( (√2))))+sin^2 ((π/( (√2))))))]
$$\:\:\:\:\mathcal{D}\acute {\mathrm{e}montrer}\:\mathrm{que}; \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{1}+\mathrm{n}^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\pi}{\:\sqrt{\mathrm{2}}}\:\frac{\mathrm{sin}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)\mathrm{cosh}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)+\mathrm{sinh}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)\mathrm{cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)}{\mathrm{sinh}^{\mathrm{2}} \left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)+\mathrm{sin}^{\mathrm{2}} \left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *