Menu Close

decompose-inside-C-x-the-fraction-f-x-1-x-2-1-n-




Question Number 74499 by mathmax by abdo last updated on 25/Nov/19
decompose inside C(x) the fraction  f(x)=(1/((x^2 +1)^n ))
decomposeinsideC(x)thefractionf(x)=1(x2+1)n
Commented by mathmax by abdo last updated on 28/Nov/19
f(x)=(1/((x^2 +1)^n )) =(1/((x−i)^n (x+i)^n )) =Σ_(k=1) ^n  (a_k /((x−i)^k )) +Σ_(k=1) ^n  (b_k /((x+i)^k ))  ch. x−i =t give f(x)=g(t)=(1/(t^n (t+2i)^n ))  let find D_(n−1) (o) for  h(t)=(1/((t+2i)^n )) =(t+2i)^(−n)    we have  h(t)=Σ_(k=0) ^(n−1)   ((h^((k)) (0))/(k!)) t^k  +(t^n /(n!))ξ(t)  we have {(t+2i)^(−n) }^((1)) =(−n) (t+2i)^(−n−1)   {(t+2i)^(−n) }^((2)) =(−n)(−n−1)(t+2i)^(−n−2)  =(−1)^2 n(n+1) (t+2i)^(−n−2)   { (t+2i)^(−n) }^((k))  =(−1)^k n(n+1)...(n+k−1)(t+2i)^(−n−k)  ⇒  h^((k)) (0) =(−1)^k  n(n+1)....(n+k−1)×(2i)^(−n−k)  ⇒  h(t)=Σ_(k=0) ^(n−1)  (((−1)^k n(n+1)...(n+k−1)(2i)^(−n−k) )/(k!)) t^k  +(t^n /(n!))ξ(t) ⇒  g(t)=((h(t))/t^n ) =Σ_(k=0) ^(n−1)   (((−1)^k n(n+1)....(n+k−1)(2i)^(−n−k) )/(k! t^(n−k) )) +(1/(n!))ξ(t)  =_(n−k =j)   Σ_(j=1) ^n  (((−1)^(n+j) n(n+1)....(2n−j−1)(2i)^(−2n+j) )/((n−j)! t^j )) +(1/(n!))ξ(t)  t=x−i ⇒ a_j =(((−1)^(n+j) n(n+1)....(2n−j−1)(2i)^(−2n+j) )/((n−j)!))  we have  f^− =f ⇒Σ_(k=1) ^n  (a_k ^− /((x+i)^k )) +Σ_(k=1) ^n   (b_k ^− /((x−i)^k )) =f ⇒  b_k =a_k ^−  ⇒  b_j =(((−1)^(n+j) n(n+1)....(2n−j−1)(−2i)^(−2n+j) )/((n−j)!))
f(x)=1(x2+1)n=1(xi)n(x+i)n=k=1nak(xi)k+k=1nbk(x+i)kch.xi=tgivef(x)=g(t)=1tn(t+2i)nletfindDn1(o)forh(t)=1(t+2i)n=(t+2i)nwehaveh(t)=k=0n1h(k)(0)k!tk+tnn!ξ(t)wehave{(t+2i)n}(1)=(n)(t+2i)n1{(t+2i)n}(2)=(n)(n1)(t+2i)n2=(1)2n(n+1)(t+2i)n2{(t+2i)n}(k)=(1)kn(n+1)(n+k1)(t+2i)nkh(k)(0)=(1)kn(n+1).(n+k1)×(2i)nkh(t)=k=0n1(1)kn(n+1)(n+k1)(2i)nkk!tk+tnn!ξ(t)g(t)=h(t)tn=k=0n1(1)kn(n+1).(n+k1)(2i)nkk!tnk+1n!ξ(t)=nk=jj=1n(1)n+jn(n+1).(2nj1)(2i)2n+j(nj)!tj+1n!ξ(t)t=xiaj=(1)n+jn(n+1).(2nj1)(2i)2n+j(nj)!wehavef=fk=1nak(x+i)k+k=1nbk(xi)k=fbk=akbj=(1)n+jn(n+1).(2nj1)(2i)2n+j(nj)!

Leave a Reply

Your email address will not be published. Required fields are marked *