decompose-inside-C-x-the-fraction-F-x-1-x-2-1-n-calculate-0-F-x-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 73484 by abdomathmax last updated on 13/Nov/19 decomposeinsideC(x)thefractionF(x)=1(x2+1)ncalculate∫0∞F(x)dx Answered by mind is power last updated on 13/Nov/19 F(x)=12∫−∞+∞dx(x2+1)n=iπRes(1(x2+1)n,i)=iπ.1(n−1)!dn−1dxn−1.(x−i)n.1(x−i)n(x+i)n∣x=if(x)=1(x+i)n,f(k)=(−1)k.n.(n+1)…(n+k−1)(x+i)n+kf(n−)(i)=(−1)n−1.n…..(2n−2)(2i)2n−1=−2in….(2n−2)4n=−2i(2n−2)!4n.(n−1)!=−2i(n−1)!.C2n−2n−1F(x)=12∫−∞+∞dx(x2+1)n=.iπ(n−1)!.−2i(n−1)C2n−1n−1.14n=πC2n−2n−122n−12ndMethode∫0+∞dx(x2+1)=∫0π2d(tg(t))(1+tg2(t))n=∫0π2(1+tg2(t))dt(1+tg2(t))n=∫0π2dt(1+tg2(t))n−1=∫0π2cos2n−2(t)dt=W2n−2..waliseor,useB(x,y)=2∫0π2cos2x−1(t)sin2y−1(t)dtB(n−12,12)=2∫0π2.cos2n−2(t)dt=Γ(n−12).Γ(12)Γ(n)Γ(12)=πΓ(n−12)=Γ(2n−12)=Γ(2n−32+1)=(2n−3)2……12.π=(2n−3)…..1.2n−1π…n⩾2B(n−12,12)=π2n−1.(2n−3)….(1).π.1(n−1)!=π.(2n−3)….1…..2.4…..(2n−2)2n−1(n−1)!.2n−1.(n−1)!=πC2n−2n−122n−2=2∫0π2cos2n−2(t)dt⇒∫0π2cos2n−2(t)dt=π2C2n−2n−122n−2=πC2n−2n−122n−1 Commented by abdomathmax last updated on 17/Nov/19 thsnkxsir. Commented by mind is power last updated on 17/Nov/19 y′rewelcom Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-roots-of-P-x-1-ix-jx-2-n-1-with-j-e-i-2pi-3-then-factorize-P-x-inside-C-x-decompose-the-fraction-F-1-P-Next Next post: let-and-roots-of-the-equation-x-2-x-2-0-simplify-A-p-p-p-and-calculate-p-0-n-1-A-p-and-p-0-n-1-A-p-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.