Menu Close

decompose-inside-C-x-the-fraction-F-x-1-x-2-1-n-calculate-0-F-x-dx-




Question Number 73484 by abdomathmax last updated on 13/Nov/19
decompose inside C(x) the fraction  F(x)=(1/((x^2  +1)^n ))  calculate ∫_0 ^∞  F(x)dx
decomposeinsideC(x)thefractionF(x)=1(x2+1)ncalculate0F(x)dx
Answered by mind is power last updated on 13/Nov/19
F(x)=(1/2)∫_(−∞) ^(+∞) (dx/((x^2 +1)^n ))  =iπRes((1/((x^2 +1)^n )),i)  =iπ.(1/((n−1)!))(d^(n−1) /dx^(n−1) ).(x−i)^n .(1/((x−i)^n (x+i)^n ))∣_(x=i)   f(x)=(1/((x+i)^n )),f^((k)) =(((−1)^k .n.(n+1)...(n+k−1))/((x+i)^(n+k) ))  f^((n−)) (i)=(((−1)^(n−1) .n.....(2n−2))/((2i)^(2n−1)  ))=−2i((n....(2n−2))/4^n )=−2i(((2n−2)!)/(4^n .(n−1)!))  =−2i(n−1)!.C_(2n−2) ^(n−1)   F(x)=(1/2)∫_(−∞) ^(+∞) (dx/((x^2 +1)^n ))=.((iπ)/((n−1)!)).−2i(n−1)C_(2n−1) ^(n−1) .(1/4^n )=π(C_(2n−2) ^(n−1) /2^(2n−1) )  2nd Methode  ∫_0 ^(+∞) (dx/((x^2 +1)))=∫_0 ^(π/2) ((d(tg(t)))/((1+tg^2 (t))^n ))=∫_0 ^(π/2) (((1+tg^2 (t))dt)/((1+tg^2 (t))^n ))  =∫_0 ^(π/2) (dt/((1+tg^2 (t))^(n−1) ))=∫_0 ^(π/2) cos^(2n−2) (t)dt=W_(2n−2) ..walise  or,use B(x,y)=2∫_0 ^(π/2) cos^(2x−1) (t)sin^(2y−1) (t)dt  B(n−(1/2),(1/2))=2∫_0 ^(π/2) .cos^(2n−2) (t)dt=((Γ(n−(1/2)).Γ((1/2)))/(Γ(n)))    Γ((1/2))=(√π)  Γ(n−(1/2))=Γ(((2n−1)/2))=Γ(((2n−3)/2)+1)=(((2n−3))/2)......(1/2).(√π)  =(((2n−3).....1.)/2^(n−1) )(√π)...n≥2  B(n−(1/2),(1/2))=((√π)/2^(n−1) ).(2n−3)....(1).(√π).(1/((n−1)!))  =((π.(2n−3)....1.....2.4.....(2n−2))/(2^(n−1) (n−1)!.2^(n−1) .(n−1)!))=π(C_(2n−2) ^(n−1) /2^(2n−2) )=2∫_0 ^(π/2) cos^(2n−2) (t)dt  ⇒∫_0 ^(π/2) cos^(2n−2) (t)dt=(π/2)(C_(2n−2) ^(n−1) /2^(2n−2) )=π(C_(2n−2) ^(n−1) /2^(2n−1) )
F(x)=12+dx(x2+1)n=iπRes(1(x2+1)n,i)=iπ.1(n1)!dn1dxn1.(xi)n.1(xi)n(x+i)nx=if(x)=1(x+i)n,f(k)=(1)k.n.(n+1)(n+k1)(x+i)n+kf(n)(i)=(1)n1.n..(2n2)(2i)2n1=2in.(2n2)4n=2i(2n2)!4n.(n1)!=2i(n1)!.C2n2n1F(x)=12+dx(x2+1)n=.iπ(n1)!.2i(n1)C2n1n1.14n=πC2n2n122n12ndMethode0+dx(x2+1)=0π2d(tg(t))(1+tg2(t))n=0π2(1+tg2(t))dt(1+tg2(t))n=0π2dt(1+tg2(t))n1=0π2cos2n2(t)dt=W2n2..waliseor,useB(x,y)=20π2cos2x1(t)sin2y1(t)dtB(n12,12)=20π2.cos2n2(t)dt=Γ(n12).Γ(12)Γ(n)Γ(12)=πΓ(n12)=Γ(2n12)=Γ(2n32+1)=(2n3)212.π=(2n3)..1.2n1πn2B(n12,12)=π2n1.(2n3).(1).π.1(n1)!=π.(2n3).1..2.4..(2n2)2n1(n1)!.2n1.(n1)!=πC2n2n122n2=20π2cos2n2(t)dt0π2cos2n2(t)dt=π2C2n2n122n2=πC2n2n122n1
Commented by abdomathmax last updated on 17/Nov/19
thsnkx sir.
thsnkxsir.
Commented by mind is power last updated on 17/Nov/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *