Menu Close

Decompose-the-function-P-x-x-4-2x-3-6x-2-20x-6-x-3-x-2-x-in-partial-fractions-




Question Number 137252 by mey3nipaba last updated on 31/Mar/21
Decompose the function P(x) = ((x^4 +2x^3 +6x^2 +20x+6)/(x^3 +x^2 +x))   in partial fractions.
DecomposethefunctionP(x)=x4+2x3+6x2+20x+6x3+x2+xinpartialfractions.
Answered by bemath last updated on 31/Mar/21
⇔ x+1 + ((4x^2 +19x+6)/(x(x^2 +x+1))) =  ⇔x+1 + (A/x) + ((Bx+C)/(x^2 +x+1))  ⇔ 4x^2 +19x+6 = A(x^2 +x+1)+(Bx+C)x  ⇔ A = [((4x^2 +19x+6)/(x^2 +x+1)) ]_(x=0) = 6  put x=1⇒29 = 18+B+C  ⇒ B+C = 11  put x=−1⇒−9= 6 −(−B+C)  ⇒ −15 = B−C  we get  { ((B=−2)),((C=13)) :}  ⇔ x+1 +(6/x)+ ((13−2x)/(x^2 +x+1))
x+1+4x2+19x+6x(x2+x+1)=x+1+Ax+Bx+Cx2+x+14x2+19x+6=A(x2+x+1)+(Bx+C)xA=[4x2+19x+6x2+x+1]x=0=6putx=129=18+B+CB+C=11putx=19=6(B+C)15=BCweget{B=2C=13x+1+6x+132xx2+x+1

Leave a Reply

Your email address will not be published. Required fields are marked *