Menu Close

Define-a-curve-E-by-the-parametric-equations-x-t-g-1-t-h-1-t-f-1-u-du-y-t-g-2-t-h-2-t-f-2-u-du-where-h-1-g-1-h-2-and-g-2-are-different




Question Number 2284 by Yozzi last updated on 13/Nov/15
Define a curve E by the parametric  equations                    x(t)=∫_(g_1 (t)) ^(h_1 (t)) f_1 (u)du                    y(t)=∫_(g_2 (t)) ^(h_2 (t)) f_2 (u)du  where h_1 ,g_1 ,h_2  and g_2  are differentiable  and both f_1  and f_2  are continuous.  Find the gradient, m, of the tangent  to E at the point N with parameter   value t (t≥0).  Let h_1 (t)=t,g_1 (t)=t^2 ,h_2 (t)=t^3 ,g_2 (t)=t^4   f_1 (u)=u^2  and f_2 (u)=u^3 . Find the   values of t when the tangent is   (i) vertical,  (ii) horizontal.  What are the equations of the tangents  in (i) and (ii)?
DefineacurveEbytheparametricequationsx(t)=g1(t)h1(t)f1(u)duy(t)=g2(t)h2(t)f2(u)duwhereh1,g1,h2andg2aredifferentiableandbothf1andf2arecontinuous.Findthegradient,m,ofthetangenttoEatthepointNwithparametervaluet(t0).Leth1(t)=t,g1(t)=t2,h2(t)=t3,g2(t)=t4f1(u)=u2andf2(u)=u3.Findthevaluesoftwhenthetangentis(i)vertical,(ii)horizontal.Whataretheequationsofthetangentsin(i)and(ii)?
Commented by Yozzi last updated on 14/Nov/15
A consequence of the Fundamental  Theorem of Calculus is that, for   φ  being continuous , and both ψ and η  being differentiable,  (d/dx)∫_(η(x)) ^(ψ(x)) φ(z)dz=φ(ψ(x))ψ^′ (x)−φ(η(x))η^′ (x).    The Fundamental Theorem of Calculus  states that for f being continuous over  the interval a≤t≤b, with one given  any x∈[a,b], and we let F be a function  such that                         F(x)=∫_a ^x f(t)dt  then F^( ′) (x)=f(x).   It may interest you to prove the result  using this theorem before using the   result.
AconsequenceoftheFundamentalTheoremofCalculusisthat,forϕbeingcontinuous,andbothψandηbeingdifferentiable,ddxη(x)ψ(x)ϕ(z)dz=ϕ(ψ(x))ψ(x)ϕ(η(x))η(x).TheFundamentalTheoremofCalculusstatesthatforfbeingcontinuousovertheintervalatb,withonegivenanyx[a,b],andweletFbeafunctionsuchthatF(x)=axf(t)dtthenF(x)=f(x).Itmayinterestyoutoprovetheresultusingthistheorembeforeusingtheresult.
Answered by Yozzi last updated on 15/Nov/15
We need to find x^′ (t) and y^′ (t).   x^′ (t)=(d/dt)∫_(g_1 (t)) ^(h_1 (t)) f_1 (u)du. From comments,  x^′ (t)=f_1 (h_1 (t))h_1 ^′ (t)−f_1 (g_1 (t))g_1 ^′ (t)  Similarly, for y^′ (t)=(d/dt)∫_(g_2 (t)) ^(h_2 (t)) f_2 (u)du,  y^′ (t)=f_2 (h_2 (t))h_2 ^′ (t)−f_2 (g_2 (t))g_2 ^′ (t).  The gradient m of the tangent to E at the  point N with parameter value t (t≥0)  is then given by                              m=((y^′ (t))/(x^′ (t))).      m=((f_2 (h_2 (t))h_2 ^′ (t)−f_2 (g_2 (t))g_2 ^′ (t))/(f_1 (h_1 (t))h_1 ^′ (t)−f_1 (g_1 (t))g_1 ^′ (t))).  Given h_1 (t)=t,g_1 (t)=t^2 ,h_2 (t)=t^3 ,g_2 (t)=t^4   ⇒h_1 ^′ (t)=1, g_1 ^′ (t)=2t,h_2 ^′ (t)=3t^2 ,g_2 ^′ (t)=4t^3 .  ∵ f_1 (u)=u^2 ,f_2 (u)=u^3   m=(((t^3 )^3 ×3t^2 −(t^4 )^3 ×4t^3 )/((t)^2 ×1−(t^2 )^2 ×2t))      =((3t^(11) −4t^(15) )/(t^2 −2t^5 ))      =((t^(11) (3−4t^4 ))/(t^2 (1−2t^3 )))  m=((t^9 (3−4t^4 ))/(1−2t^3 ))  (i) If the tangent to E at N is vertical  ⇒m is undefined for some t.  This occurs if 1−2t^3 =0⇒t=2^(−(1/3)) .  (ii)If the tangent to E at N is horizontal,  ⇒m=0⇒t^9 (3−4t^4 )=0⇒t^9 =0 or 3−4t^4 =0.  t^9 =0⇒t=0.  3−4t^4 =0⇒t^4 =3/4⇒t=±((3/4))^(1/4) .  Since t≥0 at N⇒t=((3/4))^(1/4) .  t=0 ∨ t=((3/4))^(1/4) .
Weneedtofindx(t)andy(t).x(t)=ddtg1(t)h1(t)f1(u)du.Fromcomments,x(t)=f1(h1(t))h1(t)f1(g1(t))g1(t)Similarly,fory(t)=ddtg2(t)h2(t)f2(u)du,y(t)=f2(h2(t))h2(t)f2(g2(t))g2(t).ThegradientmofthetangenttoEatthepointNwithparametervaluet(t0)isthengivenbym=y(t)x(t).m=f2(h2(t))h2(t)f2(g2(t))g2(t)f1(h1(t))h1(t)f1(g1(t))g1(t).Givenh1(t)=t,g1(t)=t2,h2(t)=t3,g2(t)=t4h1(t)=1,g1(t)=2t,h2(t)=3t2,g2(t)=4t3.f1(u)=u2,f2(u)=u3m=(t3)3×3t2(t4)3×4t3(t)2×1(t2)2×2t=3t114t15t22t5=t11(34t4)t2(12t3)m=t9(34t4)12t3(i)IfthetangenttoEatNisverticalmisundefinedforsomet.Thisoccursif12t3=0t=213.(ii)IfthetangenttoEatNishorizontal,m=0t9(34t4)=0t9=0or34t4=0.t9=0t=0.34t4=0t4=3/4t=±(34)1/4.Sincet0atNt=(34)1/4.t=0t=(34)1/4.
Answered by Yozzi last updated on 15/Nov/15
Given the functions of h_1 ,g_1 ,h_2 ,g_2 ,f_(1 )   and f_2 , we have  x(t)=∫_t^2  ^( t) u^2 du=(u^3 /3)∣_t^2  ^t =((t^3 −t^6 )/3)  y(t)=∫_t^4  ^( t^3 ) u^3 du=(u^4 /4)∣_t^4  ^t^3  =((t^(12) −t^(16) )/4).  If the tangent is vertical at t=2^(−1/3) ,  we require an x−line.   ∴x(2^(−1/3) )=((2^(−1) −2^(−2) )/3)=(1/(12))  ⇒ equation of vertical tangent is x=(1/(12)).  If the tangnet is horizontal we have  a y−line. For t=0,y(0)=0.  ∴ the equation of the tangent is y=0.  For t=(3/4)^(1/4) ,  y((3/4)^(1/4) )=((0.75^3 −0.75^4 )/4)=((((27)/(64))−((81)/(256)))/4)  y((3/4)^(1/4) )=(1/4)×((108−81)/(256))=((27)/(1024))  The equation of the other horizontal  tangent is y=27/1024.
Giventhefunctionsofh1,g1,h2,g2,f1andf2,wehavex(t)=t2tu2du=u33t2t=t3t63y(t)=t4t3u3du=u44t4t3=t12t164.Ifthetangentisverticalatt=21/3,werequireanxline.x(21/3)=21223=112equationofverticaltangentisx=112.Ifthetangnetishorizontalwehaveayline.Fort=0,y(0)=0.theequationofthetangentisy=0.Fort=(3/4)1/4,y((3/4)1/4)=0.7530.7544=2764812564y((3/4)1/4)=14×10881256=271024Theequationoftheotherhorizontaltangentisy=27/1024.

Leave a Reply

Your email address will not be published. Required fields are marked *