Define-a-curve-E-by-the-parametric-equations-x-t-g-1-t-h-1-t-f-1-u-du-y-t-g-2-t-h-2-t-f-2-u-du-where-h-1-g-1-h-2-and-g-2-are-different Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 2284 by Yozzi last updated on 13/Nov/15 DefineacurveEbytheparametricequationsx(t)=∫g1(t)h1(t)f1(u)duy(t)=∫g2(t)h2(t)f2(u)duwhereh1,g1,h2andg2aredifferentiableandbothf1andf2arecontinuous.Findthegradient,m,ofthetangenttoEatthepointNwithparametervaluet(t⩾0).Leth1(t)=t,g1(t)=t2,h2(t)=t3,g2(t)=t4f1(u)=u2andf2(u)=u3.Findthevaluesoftwhenthetangentis(i)vertical,(ii)horizontal.Whataretheequationsofthetangentsin(i)and(ii)? Commented by Yozzi last updated on 14/Nov/15 AconsequenceoftheFundamentalTheoremofCalculusisthat,forϕbeingcontinuous,andbothψandηbeingdifferentiable,ddx∫η(x)ψ(x)ϕ(z)dz=ϕ(ψ(x))ψ′(x)−ϕ(η(x))η′(x).TheFundamentalTheoremofCalculusstatesthatforfbeingcontinuousovertheintervala⩽t⩽b,withonegivenanyx∈[a,b],andweletFbeafunctionsuchthatF(x)=∫axf(t)dtthenF′(x)=f(x).Itmayinterestyoutoprovetheresultusingthistheorembeforeusingtheresult. Answered by Yozzi last updated on 15/Nov/15 Weneedtofindx′(t)andy′(t).x′(t)=ddt∫g1(t)h1(t)f1(u)du.Fromcomments,x′(t)=f1(h1(t))h1′(t)−f1(g1(t))g1′(t)Similarly,fory′(t)=ddt∫g2(t)h2(t)f2(u)du,y′(t)=f2(h2(t))h2′(t)−f2(g2(t))g2′(t).ThegradientmofthetangenttoEatthepointNwithparametervaluet(t⩾0)isthengivenbym=y′(t)x′(t).m=f2(h2(t))h2′(t)−f2(g2(t))g2′(t)f1(h1(t))h1′(t)−f1(g1(t))g1′(t).Givenh1(t)=t,g1(t)=t2,h2(t)=t3,g2(t)=t4⇒h1′(t)=1,g1′(t)=2t,h2′(t)=3t2,g2′(t)=4t3.∵f1(u)=u2,f2(u)=u3m=(t3)3×3t2−(t4)3×4t3(t)2×1−(t2)2×2t=3t11−4t15t2−2t5=t11(3−4t4)t2(1−2t3)m=t9(3−4t4)1−2t3(i)IfthetangenttoEatNisvertical⇒misundefinedforsomet.Thisoccursif1−2t3=0⇒t=2−13.(ii)IfthetangenttoEatNishorizontal,⇒m=0⇒t9(3−4t4)=0⇒t9=0or3−4t4=0.t9=0⇒t=0.3−4t4=0⇒t4=3/4⇒t=±(34)1/4.Sincet⩾0atN⇒t=(34)1/4.t=0∨t=(34)1/4. Answered by Yozzi last updated on 15/Nov/15 Giventhefunctionsofh1,g1,h2,g2,f1andf2,wehavex(t)=∫t2tu2du=u33∣t2t=t3−t63y(t)=∫t4t3u3du=u44∣t4t3=t12−t164.Ifthetangentisverticalatt=2−1/3,werequireanx−line.∴x(2−1/3)=2−1−2−23=112⇒equationofverticaltangentisx=112.Ifthetangnetishorizontalwehaveay−line.Fort=0,y(0)=0.∴theequationofthetangentisy=0.Fort=(3/4)1/4,y((3/4)1/4)=0.753−0.7544=2764−812564y((3/4)1/4)=14×108−81256=271024Theequationoftheotherhorizontaltangentisy=27/1024. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-133351Next Next post: x-3-x-2-6x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.