Menu Close

Define-a-function-f-R-R-such-that-f-f-x-x-2-x-1-for-all-real-x-Evaluate-f-0-




Question Number 4671 by 314159 last updated on 20/Feb/16
Define a function f:R→R such that f(f(x))=x^2 −x+1  for all real x.Evaluate f(0).
$${Define}\:{a}\:{function}\:{f}:{R}\rightarrow{R}\:{such}\:{that}\:{f}\left({f}\left({x}\right)\right)={x}^{\mathrm{2}} −{x}+\mathrm{1} \\ $$$${for}\:{all}\:{real}\:{x}.{Evaluate}\:{f}\left(\mathrm{0}\right). \\ $$$$ \\ $$
Answered by 123456 last updated on 20/Feb/16
f(f(x))=x^2 −x+1  f(f(f(x)))=f(x)^2 −f(x)+1  f(f(0))=1  f(f(1))=1  f(f(f(1)))=f(1)^2 −f(1)+1  f(1)=f(1)^2 −f(1)+1  f(1)^2 −2f(1)+1=0  (f(1)−1)^2 =0  f(1)=1  f(f(f(0)))=f(0)^2 −f(0)+1  f(1)=f(0)^2 −f(0)+1  1=f(0)^2 −f(0)+1  f(0)(f(0)−1)=0  f(0)=0∨f(0)=1  if f(0)=0  f(f(0))=f(0)=0≠1  so  f(0)=1  ⋮
$${f}\left({f}\left({x}\right)\right)={x}^{\mathrm{2}} −{x}+\mathrm{1} \\ $$$${f}\left({f}\left({f}\left({x}\right)\right)\right)={f}\left({x}\right)^{\mathrm{2}} −{f}\left({x}\right)+\mathrm{1} \\ $$$${f}\left({f}\left(\mathrm{0}\right)\right)=\mathrm{1} \\ $$$${f}\left({f}\left(\mathrm{1}\right)\right)=\mathrm{1} \\ $$$${f}\left({f}\left({f}\left(\mathrm{1}\right)\right)\right)={f}\left(\mathrm{1}\right)^{\mathrm{2}} −{f}\left(\mathrm{1}\right)+\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)={f}\left(\mathrm{1}\right)^{\mathrm{2}} −{f}\left(\mathrm{1}\right)+\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{f}\left(\mathrm{1}\right)+\mathrm{1}=\mathrm{0} \\ $$$$\left({f}\left(\mathrm{1}\right)−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${f}\left({f}\left({f}\left(\mathrm{0}\right)\right)\right)={f}\left(\mathrm{0}\right)^{\mathrm{2}} −{f}\left(\mathrm{0}\right)+\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)={f}\left(\mathrm{0}\right)^{\mathrm{2}} −{f}\left(\mathrm{0}\right)+\mathrm{1} \\ $$$$\mathrm{1}={f}\left(\mathrm{0}\right)^{\mathrm{2}} −{f}\left(\mathrm{0}\right)+\mathrm{1} \\ $$$${f}\left(\mathrm{0}\right)\left({f}\left(\mathrm{0}\right)−\mathrm{1}\right)=\mathrm{0} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0}\vee{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\mathrm{if}\:{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}\left({f}\left(\mathrm{0}\right)\right)={f}\left(\mathrm{0}\right)=\mathrm{0}\neq\mathrm{1} \\ $$$$\mathrm{so} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\vdots \\ $$
Commented by 123456 last updated on 21/Feb/16
f(0)=a⇒f(f(0))=f(a)=1  f(1)=b⇒f(f(1))=f(b)=1  f(f(a))=f(1)=b  f(f(b))=f(1)=b  a^2 −a+1=b⇒a=0∨a=1  b^2 −b+1=b⇒b=1  f(x)=x  f(f(x))=f(x)=x  x^2 −x+1=x  x=1
$${f}\left(\mathrm{0}\right)={a}\Rightarrow{f}\left({f}\left(\mathrm{0}\right)\right)={f}\left({a}\right)=\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)={b}\Rightarrow{f}\left({f}\left(\mathrm{1}\right)\right)={f}\left({b}\right)=\mathrm{1} \\ $$$${f}\left({f}\left({a}\right)\right)={f}\left(\mathrm{1}\right)={b} \\ $$$${f}\left({f}\left({b}\right)\right)={f}\left(\mathrm{1}\right)={b} \\ $$$${a}^{\mathrm{2}} −{a}+\mathrm{1}={b}\Rightarrow{a}=\mathrm{0}\vee{a}=\mathrm{1} \\ $$$${b}^{\mathrm{2}} −{b}+\mathrm{1}={b}\Rightarrow{b}=\mathrm{1} \\ $$$${f}\left({x}\right)={x} \\ $$$${f}\left({f}\left({x}\right)\right)={f}\left({x}\right)={x} \\ $$$${x}^{\mathrm{2}} −{x}+\mathrm{1}={x} \\ $$$${x}=\mathrm{1} \\ $$
Commented by 314159 last updated on 21/Feb/16
Thanks a lot!
$${Thanks}\:{a}\:{lot}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *