Menu Close

Define-a-function-f-R-R-such-that-f-f-x-x-2-x-1-for-all-real-x-Evaluate-f-0-




Question Number 4671 by 314159 last updated on 20/Feb/16
Define a function f:R→R such that f(f(x))=x^2 −x+1  for all real x.Evaluate f(0).
Defineafunctionf:RRsuchthatf(f(x))=x2x+1forallrealx.Evaluatef(0).
Answered by 123456 last updated on 20/Feb/16
f(f(x))=x^2 −x+1  f(f(f(x)))=f(x)^2 −f(x)+1  f(f(0))=1  f(f(1))=1  f(f(f(1)))=f(1)^2 −f(1)+1  f(1)=f(1)^2 −f(1)+1  f(1)^2 −2f(1)+1=0  (f(1)−1)^2 =0  f(1)=1  f(f(f(0)))=f(0)^2 −f(0)+1  f(1)=f(0)^2 −f(0)+1  1=f(0)^2 −f(0)+1  f(0)(f(0)−1)=0  f(0)=0∨f(0)=1  if f(0)=0  f(f(0))=f(0)=0≠1  so  f(0)=1  ⋮
f(f(x))=x2x+1f(f(f(x)))=f(x)2f(x)+1f(f(0))=1f(f(1))=1f(f(f(1)))=f(1)2f(1)+1f(1)=f(1)2f(1)+1f(1)22f(1)+1=0(f(1)1)2=0f(1)=1f(f(f(0)))=f(0)2f(0)+1f(1)=f(0)2f(0)+11=f(0)2f(0)+1f(0)(f(0)1)=0f(0)=0f(0)=1iff(0)=0f(f(0))=f(0)=01sof(0)=1
Commented by 123456 last updated on 21/Feb/16
f(0)=a⇒f(f(0))=f(a)=1  f(1)=b⇒f(f(1))=f(b)=1  f(f(a))=f(1)=b  f(f(b))=f(1)=b  a^2 −a+1=b⇒a=0∨a=1  b^2 −b+1=b⇒b=1  f(x)=x  f(f(x))=f(x)=x  x^2 −x+1=x  x=1
f(0)=af(f(0))=f(a)=1f(1)=bf(f(1))=f(b)=1f(f(a))=f(1)=bf(f(b))=f(1)=ba2a+1=ba=0a=1b2b+1=bb=1f(x)=xf(f(x))=f(x)=xx2x+1=xx=1
Commented by 314159 last updated on 21/Feb/16
Thanks a lot!
Thanksalot!

Leave a Reply

Your email address will not be published. Required fields are marked *