Menu Close

Define-the-sequence-a-n-by-the-recurrence-equation-a-n-1-pa-n-qa-n-1-n-1-where-p-q-C-0-and-a-0-a-1-C-Find-a-n-in-terms-of-n-




Question Number 3565 by Yozzii last updated on 15/Dec/15
Define the sequence {a_n } by the  recurrence equation                      a_(n+1) =pa_n +qa_(n−1)   (n≥1)  where p,q∈C−{0} and   a_0 =α , a_1 =β    α,β∈C.  Find a_n  in terms of n.
Definethesequence{an}bytherecurrenceequationan+1=pan+qan1(n1)wherep,qC{0}anda0=α,a1=βα,βC.Findanintermsofn.
Answered by prakash jain last updated on 16/Dec/15
a_0 =α  a_1 =β  a_n =pa_(n−1) +qa_(n−2)   x^2 −px−q=0⇒x=((p±(√(p^2 +4q)))/2)  assume p^2 +4q>0  a_n =k_1 (((p+(√(p^2 +4q)))/2))^n +k_2 (((p−(√(p^2 +4q)))/2))^n   k_1 +k_2 =α⇒k_2 =α−k_1   k_1 (((p+(√(p^2 +4q)))/2))+k_2 (((p−(√(p^2 +4q)))/2))=β  k_1 (((p+(√(p^2 +4q)))/2))−k_1 (((p−(√(p^2 +4q)))/2))+α(((p−(√(p^2 +4q)))/2))=β  k_1 (√(p^2 +4q)) =β−α(((p−(√(p^2 +4q)))/2))  k_1 =(β/( (√(p^2 +4q))))−((αp)/(2(√(p^2 +4a))))+(α/2)  k_2 =(α/2)−(β/( (√(p^2 +4q))))+((αp)/(2(√(p^2 +4a))))  a_n =k_1 (((p+(√(p^2 +4q)))/2))^n +k_2 (((p−(√(p^2 +4q)))/2))^n
a0=αa1=βan=pan1+qan2x2pxq=0x=p±p2+4q2assumep2+4q>0an=k1(p+p2+4q2)n+k2(pp2+4q2)nk1+k2=αk2=αk1k1(p+p2+4q2)+k2(pp2+4q2)=βk1(p+p2+4q2)k1(pp2+4q2)+α(pp2+4q2)=βk1p2+4q=βα(pp2+4q2)k1=βp2+4qαp2p2+4a+α2k2=α2βp2+4q+αp2p2+4aan=k1(p+p2+4q2)n+k2(pp2+4q2)n
Commented by Yozzii last updated on 15/Dec/15
A generating function approach can  be used?
Ageneratingfunctionapproachcanbeused?
Commented by prakash jain last updated on 16/Dec/15
Thanks for the hint. I didn′t think about it  yet.
Thanksforthehint.Ididntthinkaboutityet.
Commented by Rasheed Soomro last updated on 17/Dec/15
Where has x^2 −px−q=0 come?
Wherehasx2pxq=0come?
Commented by Rasheed Soomro last updated on 17/Dec/15
Is tbis ′ generating function approach ′ ?  I didn′t understand.
Istbisgeneratingfunctionapproach?Ididntunderstand.
Commented by Yozzii last updated on 17/Dec/15
No. This solution is based on a   theorem on difference equations   of the form       ta_(n+1) +ra_n +ca_(n−1) =0.
No.Thissolutionisbasedonatheoremondifferenceequationsoftheformtan+1+ran+can1=0.
Commented by Yozzii last updated on 17/Dec/15
Let t,r,c be constants, t≠0, in the  recurrence relation             ta_(n+1) +ra_n +ca_(n−1) =0    (n≥1)  defining the sequence {a_n } with   a_0 =f and a_1 =h.  Consider the auxiliary equation              tλ^2 +rλ+c=0  whose roots are α and β.  The general term a_n  of the sequence  is then given by                           a_n =Aα^n +Bβ^n   (n≥0)  if α≠β.  If  α=β≠0, a_n =(An+B)α^n    (n≥0).  The values of A and B are uniquely  determined by the values of a_1  and a_0 .
Lett,r,cbeconstants,t0,intherecurrencerelationtan+1+ran+can1=0(n1)definingthesequence{an}witha0=fanda1=h.Considertheauxiliaryequationtλ2+rλ+c=0whoserootsareαandβ.Thegeneraltermanofthesequenceisthengivenbyan=Aαn+Bβn(n0)ifαβ.Ifα=β0,an=(An+B)αn(n0).ThevaluesofAandBareuniquelydeterminedbythevaluesofa1anda0.
Commented by Yozzii last updated on 17/Dec/15
Can′t p^2 +4q<0 ?
Cantp2+4q<0?
Commented by prakash jain last updated on 17/Dec/15
p^2 +4q can be less than 0 real or complex.  I just solved for one case >0.  As you mentioned if p^2 +4q=0, both roots  are equal say r  a_n =k_1 r^n +k_2 nr^n   for unequal roots previous result is correct.
p2+4qcanbelessthan0realorcomplex.Ijustsolvedforonecase>0.Asyoumentionedifp2+4q=0,bothrootsareequalsayran=k1rn+k2nrnforunequalrootspreviousresultiscorrect.

Leave a Reply

Your email address will not be published. Required fields are marked *