Menu Close

Define-the-sequence-a-n-by-the-recursive-formula-a-n-1-ca-n-nr-n-1-n-Z-n-1-with-a-1-h-and-c-r-h-C-c-r-0-Find-a-n-in-terms-of-n-




Question Number 3974 by Yozzii last updated on 26/Dec/15
Define the sequence {a_n } by the  recursive formula      a_(n+1) =ca_n −nr^(n−1)    (n∈Z,n≥1)  with a_1 =h and c,r,h∈C, c,r≠0.  Find a_n  in terms of n.
Definethesequence{an}bytherecursiveformulaan+1=cannrn1(nZ,n1)witha1=handc,r,hC,c,r0.Findanintermsofn.
Commented by Rasheed Soomro last updated on 26/Dec/15
  a_(n+1) =ca_n −nr^(n−1)    (n∈Z,n≥1)  n→n−1  a_n =ca_(n−1) −(n−1)r^(n−2)   a_2 =ch−1  a_3 =c(ch−1)−2r=c^2 h−c−2r  a_4 =c(c^2 h−c−2r)−3r^2 =c^3 h−c^2 −2cr−3r^2   a_5 =c(c^3 h−c^2 −2cr−3r^2 )−4r^3 =c^4 h−c^3 −2c^2 r−3cr^2 −4r^3   Observing/Copying  pattern   { ((a_1 =h)),((a_n ^(n≥2) ={−c^(n−2) −2c^(n−3) r−3c^(n−4) r^2 −...−k c^(n−k−1) r^(k−1) }+c^(n−1) h, 1≤k≤n)) :}
an+1=cannrn1(nZ,n1)nn1an=can1(n1)rn2a2=ch1a3=c(ch1)2r=c2hc2ra4=c(c2hc2r)3r2=c3hc22cr3r2a5=c(c3hc22cr3r2)4r3=c4hc32c2r3cr24r3Observing/Copyingpattern{a1=hann2={cn22cn3r3cn4r2kcnk1rk1}+cn1h,1kn
Commented by prakash jain last updated on 26/Dec/15
From Rasheed′s contribution.  a_n =−c^(n−2) −2c^(n−3) r−3c^(n−4) r^2 −...−k c^(n−k−1) r^(k−1) +c^(n−1) h  a_n =c^(n−1) h−Σ_(k=0) ^(n−2) (n−2−k)c^k r^(n−2−k)   (r/c)a_n =((c^(n−1) h)/r)−Σ_(k=0) ^(n−2) (n−2−k)c^(k−1) r^(n−1−k)   b_n =c^(n−2) +2c^(n−1) r+3c^(n−2) r^2 +4c^(n−3) r^3 +..+(n−1)r^(n−2)   (r/c)b_n =     +c^(n−1) r+2c^(n−2) r+3c^(n−3) r^3 +..+(n−2)r^(n−2) +(n−1)(r^(n−2) /c)  b_n (1−(r/c))=c^(n−2) +c^(n−1) r+c^(n−2) r^2 +...+r^(n−2) +(n−1)(r^(n−2) /c)  red is a GP with Acommon ratio (r/c) term (n−1)  b_n (((c−r)/c))=((c^(n−2) ((r^(n−1) /c^(n−1) )−1))/((r/c)−1))+(n−1)(r^(n−2) /c)  b_n (((c−r)/c))=(((r^(n−1) −c^(n−1) ))/(r−c))+(n−1)(r^(n−2) /c)  b_n =−((c(r^(n−1) −c^(n−1) ))/((c−r)^2 ))+(((n−1)r^(n−2) )/((c−r)))  a_n =c^(n−1) h−b_n   a_n =c^(n−1) h+((c(r^(n−1) −c^(n−1) ))/((c−r)^2 ))−(((n−1)r^(n−2) )/((c−r)))
FromRasheedscontribution.an=cn22cn3r3cn4r2kcnk1rk1+cn1han=cn1hn2k=0(n2k)ckrn2krcan=cn1hrn2k=0(n2k)ck1rn1kbn=cn2+2cn1r+3cn2r2+4cn3r3+..+(n1)rn2rcbn=+cn1r+2cn2r+3cn3r3+..+(n2)rn2+(n1)rn2cbn(1rc)=cn2+cn1r+cn2r2++rn2+(n1)rn2credisaGPwithAcommonratiorcterm(n1)bn(crc)=cn2(rn1cn11)rc1+(n1)rn2cbn(crc)=(rn1cn1)rc+(n1)rn2cbn=c(rn1cn1)(cr)2+(n1)rn2(cr)an=cn1hbnan=cn1h+c(rn1cn1)(cr)2(n1)rn2(cr)
Commented by Yozzii last updated on 27/Dec/15
Awesome.
Awesome.
Commented by Rasheed Soomro last updated on 27/Dec/15
GreaT!
GreaT!

Leave a Reply

Your email address will not be published. Required fields are marked *