Menu Close

determinant-Solve-the-following-Equation-81-sin-2-x-81-cos-2-x-30-




Question Number 134464 by bramlexs22 last updated on 04/Mar/21
        determinant (((Solve the following Equation)),((  81^(sin^2 x)  + 81^(cos^2 x)  = 30 )))
SolvethefollowingEquation81sin2x+81cos2x=30
Commented by harckinwunmy last updated on 04/Mar/21
ff
ff
Answered by EDWIN88 last updated on 04/Mar/21
     81^(sin^2 x)  + 81^(1−sin^2 x)  = 30   multiply both sides by 81^(sin^2 x)      (81^(sin^2 x) )^2 −30×81^(sin^2 x)  + 81 = 0   let 81^(sin^2 x)  = u ⇒u^2 −30u + 81 = 0  (u−3)(u−27) = 0  for u=3 → determinant (((81^(sin^2 x)  = 3 ⇒sin^2 x=(1/4))),((sin x=(1/2) or sin x=−(1/2))),((x= { ((π/6)),((5π/6)) :}+ 2kπ  or x= { ((−π/6)),((7π/6)) :}+2kπ)))  for u=27→ determinant (((81^(sin^2 x) =27⇒sin^2 x=(3/4))),((sin x = ((√3)/2) or sin x=−((√3)/2))),((x= { ((π/3)),((2π/3)) :}+2kπ or x= { ((−π/3)),((4π/3)) :}+2kπ)))
81sin2x+811sin2x=30multiplybothsidesby81sin2x(81sin2x)230×81sin2x+81=0let81sin2x=uu230u+81=0(u3)(u27)=0foru=381sin2x=3sin2x=14sinx=12orsinx=12x={π/65π/6+2kπorx={π/67π/6+2kπforu=2781sin2x=27sin2x=34sinx=32orsinx=32x={π/32π/3+2kπorx={π/34π/3+2kπ

Leave a Reply

Your email address will not be published. Required fields are marked *