Determine-1-a-r-ar-a-2r-ar-2-a-n-1-r-ar-n-1- Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 5784 by Rasheed Soomro last updated on 27/May/16 Determine:1+a+rar+a+2rar2+…+a+(n−1)rarn−1 Answered by Yozzii last updated on 27/May/16 S(n)=1+a+rar+a+2rar2+a+3rar3+…+a+(n−3)rarn−3+a+(n−2)rarn−2+a+(n−1)rarn−1S(n)=1+(1r+1a)+(1r2+2ar)+(1r3+3ar2)+(1r4+4ar3)+(1r5+5ar4)+…+(1rn−3+n−3arn−4)+(1rn−2+n−2arn−3)+(1rn−1+n−1arn−2)⇒rS(n)=r+(1+ra)+(1r+2a)+(1r2+3ar)+(1r3+4ar2)+(1r4+5ar3)+…+(1rn−4+n−3arn−5)+(1rn−3+n−2arn−4)+(1rn−2+n−1arn−3)⇒(1−r)S(n)=−r−2a+1−1+1r−1r+1a−ra+1r2−1r2+2ar−3ar+1r3−1r3+3ar2−4ar2+1r4−1r4+4ar3−5ar3+…+1rn−3−1rn−3−1arn−4+0−1arn−3+1rn−1+n−1arn−2(1−r)S(n)=−r−1+ra−(1ar+1ar2+1ar3+…+1arn−4+1arn−3+1arn−2)+1rn−1+narn−2(1−r)S(n)=−1+ra+1rn−1+narn−2−r−1ar(1+1r+1r2+…1rn−5+1rn−4+1rn−3)S(n)=11−r(−1+ra+1rn−1+narn−2−r−1ar(1−1rn−21−1r))S(n)=1r−1(r+r+1a+1ar((rn−2−1)/rn−2(r−1)/r)−1rn−1−narn−2)S(n)=1r−1(r+r+1a+rn−2−1arn−2(r−1)−1rn−1−narn−2)−−−−−−−−−−−−−−−−−−−−−−−−−−E.g.n=1S(1)=1r−1(r+r+1a+r−1−1ar−1(r−1)−1−1ar−1)S(1)=1r−1(r−1+r+1a+r−1−1a(1−r−1)−ra)S(1)=1r−1(r−1+1a−1a)S(1)=r−1r−1=1(r≠1)n=2S(2)=1r−1(r+ra+1a+0−1r−2a)S(2)=1r−1(r2−1r+r−1a)S(2)=r+1r+1a=1+1r+1a=1+a+rar Commented by Rasheed Soomro last updated on 28/May/16 THANKS! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Why-x-x-2x-Explain-by-properties-laws-Next Next post: Solve-simultaneously-2x-y-z-8-i-x-2-y-2-2z-2-14-ii-3x-3-4y-3-z-3-195-iii-Please-help-though-equation-Thanks-for-your-help- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.