Menu Close

Determine-1-a-r-ar-a-2r-ar-2-a-n-1-r-ar-n-1-




Question Number 5784 by Rasheed Soomro last updated on 27/May/16
  Determine:  1+((a+r)/(ar))+((a+2r)/(ar^2 ))+...+((a+(n−1)r)/(ar^(n−1) ))
Determine:1+a+rar+a+2rar2++a+(n1)rarn1
Answered by Yozzii last updated on 27/May/16
S(n)=1+((a+r)/(ar))+((a+2r)/(ar^2 ))+((a+3r)/(ar^3 ))+...+((a+(n−3)r)/(ar^(n−3) ))+((a+(n−2)r)/(ar^(n−2) ))+((a+(n−1)r)/(ar^(n−1) ))  S(n)=1+((1/r)+(1/a))+((1/r^2 )+(2/(ar)))+((1/r^3 )+(3/(ar^2 )))+((1/r^4 )+(4/(ar^3 )))+((1/r^5 )+(5/(ar^4 )))+...+((1/r^(n−3) )+((n−3)/(ar^(n−4) )))+((1/r^(n−2) )+((n−2)/(ar^(n−3) )))+((1/r^(n−1) )+((n−1)/(ar^(n−2) )))  ⇒rS(n)=r+(1+(r/a))+((1/r)+(2/a))+((1/r^2 )+(3/(ar)))+((1/r^3 )+(4/(ar^2 )))+((1/r^4 )+(5/(ar^3 )))+...+((1/r^(n−4) )+((n−3)/(ar^(n−5) )))+((1/r^(n−3) )+((n−2)/(ar^(n−4) )))+((1/r^(n−2) )+((n−1)/(ar^(n−3) )))  ⇒(1−r)S(n)=−r−(2/a)+1−1+(1/r)−(1/r)+(1/a)−(r/a)+(1/r^2 )−(1/r^2 )+(2/(ar))−(3/(ar))+(1/r^3 )−(1/r^3 )+(3/(ar^2 ))−(4/(ar^2 ))+(1/r^4 )−(1/r^4 )+(4/(ar^3 ))−(5/(ar^3 ))+...+(1/r^(n−3) )−(1/r^(n−3) )−(1/(ar^(n−4) ))+0−(1/(ar^(n−3) ))+(1/r^(n−1) )+((n−1)/(ar^(n−2) ))  (1−r)S(n)=−r−((1+r)/a)−((1/(ar))+(1/(ar^2 ))+(1/(ar^3 ))+...+(1/(ar^(n−4) ))+(1/(ar^(n−3) ))+(1/(ar^(n−2) )))+(1/r^(n−1) )+(n/(ar^(n−2) ))  (1−r)S(n)=−((1+r)/a)+(1/r^(n−1) )+(n/(ar^(n−2) ))−r−(1/(ar))(1+(1/r)+(1/r^2 )+...(1/r^(n−5) )+(1/r^(n−4) )+(1/r^(n−3) ))  S(n)=(1/(1−r))(−((1+r)/a)+(1/r^(n−1) )+(n/(ar^(n−2) ))−r−(1/(ar))(((1−(1/r^(n−2) ))/(1−(1/r)))))  S(n)=(1/(r−1))(r+((r+1)/a)+(1/(ar))((((r^(n−2) −1)/r^(n−2) )/((r−1)/r)))−(1/r^(n−1) )−(n/(ar^(n−2) )))  S(n)=(1/(r−1))(r+((r+1)/a)+((r^(n−2) −1)/(ar^(n−2) (r−1)))−(1/r^(n−1) )−(n/(ar^(n−2) )))  −−−−−−−−−−−−−−−−−−−−−−−−−−  E.g. n=1  S(1)=(1/(r−1))(r+((r+1)/a)+((r^(−1) −1)/(ar^(−1) (r−1)))−1−(1/(ar^(−1) )))  S(1)=(1/(r−1))(r−1+((r+1)/a)+((r^(−1) −1)/(a(1−r^(−1) )))−(r/a))  S(1)=(1/(r−1))(r−1+(1/a)−(1/a))  S(1)=((r−1)/(r−1))=1  (r≠1)  n=2  S(2)=(1/(r−1))(r+(r/a)+(1/a)+0−(1/r)−(2/a))  S(2)=(1/(r−1))(((r^2 −1)/r)+((r−1)/a))  S(2)=((r+1)/r)+(1/a)=1+(1/r)+(1/a)=1+((a+r)/(ar))
S(n)=1+a+rar+a+2rar2+a+3rar3++a+(n3)rarn3+a+(n2)rarn2+a+(n1)rarn1S(n)=1+(1r+1a)+(1r2+2ar)+(1r3+3ar2)+(1r4+4ar3)+(1r5+5ar4)++(1rn3+n3arn4)+(1rn2+n2arn3)+(1rn1+n1arn2)rS(n)=r+(1+ra)+(1r+2a)+(1r2+3ar)+(1r3+4ar2)+(1r4+5ar3)++(1rn4+n3arn5)+(1rn3+n2arn4)+(1rn2+n1arn3)(1r)S(n)=r2a+11+1r1r+1ara+1r21r2+2ar3ar+1r31r3+3ar24ar2+1r41r4+4ar35ar3++1rn31rn31arn4+01arn3+1rn1+n1arn2(1r)S(n)=r1+ra(1ar+1ar2+1ar3++1arn4+1arn3+1arn2)+1rn1+narn2(1r)S(n)=1+ra+1rn1+narn2r1ar(1+1r+1r2+1rn5+1rn4+1rn3)S(n)=11r(1+ra+1rn1+narn2r1ar(11rn211r))S(n)=1r1(r+r+1a+1ar((rn21)/rn2(r1)/r)1rn1narn2)S(n)=1r1(r+r+1a+rn21arn2(r1)1rn1narn2)E.g.n=1S(1)=1r1(r+r+1a+r11ar1(r1)11ar1)S(1)=1r1(r1+r+1a+r11a(1r1)ra)S(1)=1r1(r1+1a1a)S(1)=r1r1=1(r1)n=2S(2)=1r1(r+ra+1a+01r2a)S(2)=1r1(r21r+r1a)S(2)=r+1r+1a=1+1r+1a=1+a+rar
Commented by Rasheed Soomro last updated on 28/May/16
T_(HANK) S!
THANKS!

Leave a Reply

Your email address will not be published. Required fields are marked *