Menu Close

Determine-and-prove-if-true-0-n-x-2-dx-lt-k-1-n-k-2-




Question Number 9533 by FilupSmith last updated on 14/Dec/16
Determine and prove if true:  ∫_0 ^( n) x^2 dx < Σ_(k=1) ^n k^2
Determineandproveiftrue:0nx2dx<nk=1k2
Answered by geovane10math last updated on 14/Dec/16
(n^3 /3) + C  < 1 + 4 + 9 + ... + n^2   (n^3 /3) + C < ((n(n + 1)(2n + 1))/6)  C < (((n^2  + n)(2n + 1))/6) − (n^3 /3)   C < ((2n^3  + n^2  + 2n^2  + n − 2n^3  )/6)  C < ((3n^2  + n)/6)  It depends of the integration′s constant..      0 < ((3n^2  + n)/6)  3n^2  + n > 0  n(3n + 1) = 0  n_1  = 0       n_2  = − (1/3)  S = {n ∈ R ∣ n < − (1/3) or n > 0}
n33+C<1+4+9++n2n33+C<n(n+1)(2n+1)6C<(n2+n)(2n+1)6n33C<2n3+n2+2n2+n2n36C<3n2+n6Itdependsoftheintegrationsconstant..0<3n2+n63n2+n>0n(3n+1)=0n1=0n2=13S={nRn<13orn>0}
Commented by geovane10math last updated on 14/Dec/16
DO NOT CONSIDER THE C,  I WRONG SORRY
DONOTCONSIDERTHEC,IWRONGSORRY
Answered by sou1618 last updated on 14/Dec/16
other solution...  k=0,1,2,3,....  when x: k≤x≤k+1  ⇒k^2 ≤x^2 ≤(k+1)^2     ⇒∫_k ^(k+1) k^2 dx<∫_k ^(k+1) x^2 dx<∫_k ^(k+1) (k+1)^2 dx  ⇔k^2 (k+1−k)<∫_k ^(k+1) x^2 dx<(k+1)^2 (k+1−k)  ⇔k^2 <∫_k ^(k+1) x^2 dx<(k+1)^2   ⇒Σ_(k=0) ^(n−1) k^2 <Σ_(k=0) ^(n−1) ∫_k ^(k+1) x^2 dx<Σ_(k=0) ^(n−1) (k+1)^2   ⇔Σ_(k=0) ^(n−1) k^2 <∫_0 ^n x^2 dx<Σ_(k=0) ^(n−1) (k+1)^2 =Σ_(k=1) ^n k^2   ∗Σ_(k=0) ^(n−1) (k+1)^2 =1^2 +2^2 +...+n^2 =Σ_(k=1) ^n k^2     ∴ Σ_(k=0) ^(n−1) k^2 <∫_0 ^n x^2 dx<Σ_(k=1) ^n k^2
othersolutionk=0,1,2,3,.whenx:kxk+1k2x2(k+1)2kk+1k2dx<kk+1x2dx<kk+1(k+1)2dxk2(k+1k)<kk+1x2dx<(k+1)2(k+1k)k2<kk+1x2dx<(k+1)2n1k=0k2<n1k=0kk+1x2dx<n1k=0(k+1)2n1k=0k2<0nx2dx<n1k=0(k+1)2=nk=1k2n1k=0(k+1)2=12+22++n2=nk=1k2n1k=0k2<0nx2dx<nk=1k2
Answered by mrW last updated on 14/Dec/16
∫_0 ^( n) x^2 dx=(1/3)[x^3 ]_0 ^n =(n^3 /3)  Σ_(k=1) ^n k^2 =((n(n+1)(2n+1))/6)  =((2n^3 +3n^2 +n)/6)=(n^3 /3)+((n^2 /2)+(n/6))  >(n^3 /3)=∫_0 ^( n) x^2 dx
0nx2dx=13[x3]0n=n33nk=1k2=n(n+1)(2n+1)6=2n3+3n2+n6=n33+(n22+n6)>n33=0nx2dx

Leave a Reply

Your email address will not be published. Required fields are marked *