Menu Close

determine-equation-of-circle-that-offensive-the-both-of-coordinate-and-through-2-1-




Question Number 5998 by Kasih last updated on 09/Jun/16
determine equation of circle that offensive the  both of coordinate and through (2,−1)
$${determine}\:{equation}\:{of}\:{circle}\:{that}\:{offensive}\:{the} \\ $$$${both}\:{of}\:{coordinate}\:{and}\:{through}\:\left(\mathrm{2},−\mathrm{1}\right) \\ $$
Commented by Rasheed Soomro last updated on 09/Jun/16
What do you mean by “offensive”?
$${What}\:{do}\:{you}\:{mean}\:{by}\:“{offensive}''? \\ $$
Commented by Kasih last updated on 09/Jun/16
i don′t know. maybe offend, treat, touch, or pass.  sorry i can′t use english language well
$${i}\:{don}'{t}\:{know}.\:{maybe}\:{offend},\:{treat},\:{touch},\:{or}\:{pass}. \\ $$$${sorry}\:{i}\:{can}'{t}\:{use}\:{english}\:{language}\:{well} \\ $$
Commented by FilupSmith last updated on 09/Jun/16
Assumed Correction:  Determin the equation of the circle  that passes through the coordinate  (2, −1)
$$\mathrm{Assumed}\:\mathrm{Correction}: \\ $$$$\mathrm{Determin}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle} \\ $$$$\mathrm{that}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{coordinate} \\ $$$$\left(\mathrm{2},\:−\mathrm{1}\right) \\ $$
Commented by Kasih last updated on 09/Jun/16
and pass through the both axis in cartrsian coordinate
$${and}\:{pass}\:{through}\:{the}\:{both}\:{axis}\:{in}\:{cartrsian}\:{coordinate} \\ $$
Commented by prakash jain last updated on 09/Jun/16
Mostly the question might be 2 axis as tangent  and passing thru the given point.
$$\mathrm{Mostly}\:\mathrm{the}\:\mathrm{question}\:\mathrm{might}\:\mathrm{be}\:\mathrm{2}\:\mathrm{axis}\:\mathrm{as}\:\mathrm{tangent} \\ $$$$\mathrm{and}\:\mathrm{passing}\:\mathrm{thru}\:\mathrm{the}\:\mathrm{given}\:\mathrm{point}. \\ $$
Answered by Rasheed Soomro last updated on 10/Jun/16
•The center of the circle which touches  both axes is equidistant from the axes.    •Also if the circle is tangent to both axes,  it is limeted to one quardant only.  • Since it passes through (2,−1) that means the  circle is in fourth quardant.    •Let  h  is  the directed  distance of the  centre from   x-axis. Then  the directed distance of the center  from y-axis is   −h. [y-coordinate is negative in  fourth quardant]  •The  radius of the circle is  ∣ h∣.    Hence the equation of such circle will be:               (x−h)^2 +( y−(−h) )^2 =∣h∣^2   As this circle passes through (2,−1), the  equation  will be satisfied by (x,y)=(2,−1):                     (2−h)^2 +(−1+h)^2 =h^2      ∵ ∣h∣^2 =h^2                   4−4h+h^2 +1−2h+h^2 −h^2 =0                  h^2 −6h+5=0                  (h−1)(h−5)=0                   h=1  ∨  h=5  The equation of the required circle is                   (x−1)^2 +(y+1)^2 =1   Or           (x−5)^2 +(y+5)^2 =25
$$\bullet{The}\:{center}\:{of}\:{the}\:{circle}\:{which}\:{touches} \\ $$$${both}\:{axes}\:{is}\:{equidistant}\:{from}\:{the}\:{axes}. \\ $$$$ \\ $$$$\bullet{Also}\:{if}\:{the}\:{circle}\:{is}\:{tangent}\:{to}\:{both}\:{axes}, \\ $$$${it}\:{is}\:{limeted}\:{to}\:{one}\:{quardant}\:{only}. \\ $$$$\bullet\:{Since}\:{it}\:{passes}\:{through}\:\left(\mathrm{2},−\mathrm{1}\right)\:{that}\:{means}\:{the} \\ $$$${circle}\:{is}\:{in}\:{fourth}\:{quardant}. \\ $$$$ \\ $$$$\bullet{Let}\:\:{h}\:\:{is}\:\:{the}\:{directed}\:\:{distance}\:{of}\:{the}\:\:{centre}\:{from}\: \\ $$$${x}-{axis}.\:{Then}\:\:{the}\:{directed}\:{distance}\:{of}\:{the}\:{center} \\ $$$${from}\:{y}-{axis}\:{is}\:\:\:−{h}.\:\left[{y}-{coordinate}\:{is}\:{negative}\:{in}\right. \\ $$$$\left.{fourth}\:{quardant}\right] \\ $$$$\bullet{The}\:\:{radius}\:{of}\:{the}\:{circle}\:{is}\:\:\mid\:{h}\mid. \\ $$$$ \\ $$$${Hence}\:{the}\:{equation}\:{of}\:{such}\:{circle}\:{will}\:{be}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left({x}−{h}\right)^{\mathrm{2}} +\left(\:{y}−\left(−{h}\right)\:\right)^{\mathrm{2}} =\mid{h}\mid^{\mathrm{2}} \\ $$$${As}\:{this}\:{circle}\:{passes}\:{through}\:\left(\mathrm{2},−\mathrm{1}\right),\:{the} \\ $$$${equation}\:\:{will}\:{be}\:{satisfied}\:{by}\:\left({x},{y}\right)=\left(\mathrm{2},−\mathrm{1}\right): \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}−{h}\right)^{\mathrm{2}} +\left(−\mathrm{1}+{h}\right)^{\mathrm{2}} ={h}^{\mathrm{2}} \:\:\:\:\:\because\:\mid{h}\mid^{\mathrm{2}} ={h}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}−\mathrm{4}{h}+{h}^{\mathrm{2}} +\mathrm{1}−\mathrm{2}{h}+{h}^{\mathrm{2}} −{h}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{h}^{\mathrm{2}} −\mathrm{6}{h}+\mathrm{5}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({h}−\mathrm{1}\right)\left({h}−\mathrm{5}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{h}=\mathrm{1}\:\:\vee\:\:{h}=\mathrm{5} \\ $$$${The}\:{equation}\:{of}\:{the}\:{required}\:{circle}\:{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\:{Or}\:\:\:\:\:\:\:\:\:\:\:\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left({y}+\mathrm{5}\right)^{\mathrm{2}} =\mathrm{25} \\ $$$$ \\ $$
Commented by Rasheed Soomro last updated on 10/Jun/16
Commented by Rasheed Soomro last updated on 10/Jun/16
Commented by Kasih last updated on 10/Jun/16
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *