Menu Close

Determine-f-t-such-that-t-Z-x-2-8x-f-t-has-integer-solution-




Question Number 4423 by Rasheed Soomro last updated on 24/Jan/16
Determine f(t) such that ∀ t∈Z  x^2 =8x+f(t) has integer-solution.
Determinef(t)suchthattZx2=8x+f(t)hasintegersolution.
Commented by Yozzii last updated on 24/Jan/16
Try f(t)=c; c is a real constant.  x^2 −8x−c=0  x=((8±(√(64+4c)))/2)  x=((8±2(√(16+c)))/2)  x=4±(√(16+c))  For x∈Z⊂R⇒16+c≥0 ∧ 16+c=n^2   for ∀ n∈Z^+ +{0}. Hence f(t)=c  for integer solutions x to exist for  x^2 =8x+f(t) if c=n^2 −16 for ∀n∈Z.    Checking: x^2 =8x+n^2 −16  x^2 −8x+16−n^2 =0  ⇒ x=((8±(√(64−64+4n^2 )))/2)  x=((8±2n)/2)  x=4±n∈Z.
Tryf(t)=c;cisarealconstant.x28xc=0x=8±64+4c2x=8±216+c2x=4±16+cForxZR16+c016+c=n2fornZ++{0}.Hencef(t)=cforintegersolutionsxtoexistforx2=8x+f(t)ifc=n216fornZ.Checking:x2=8x+n216x28x+16n2=0x=8±6464+4n22x=8±2n2x=4±nZ.
Commented by Yozzii last updated on 24/Jan/16
x^2 −8x−f(t)=0  x=((8±(√(64+4f(t))))/2)=4±(√(16+f(t))).  f(t) , ∀t∈Z,must satisfy (1) f(t)≥−16  and (2) f(t)+16=N^2   where N∈Z.  Thus, let t=N⇒f(t)=t^2 −16.  This further suggests that f(t)=(P(t))^2 −16  where P(t) is a polynomial in t with real  integer coefficients generally.  ∴ x=4±(√((P(t))^2 −16+16))=4±P(t).  So x=4±P(t)∈Z if t∈Z.
x28xf(t)=0x=8±64+4f(t)2=4±16+f(t).f(t),tZ,mustsatisfy(1)f(t)16and(2)f(t)+16=N2whereNZ.Thus,lett=Nf(t)=t216.Thisfurthersuggeststhatf(t)=(P(t))216whereP(t)isapolynomialintwithrealintegercoefficientsgenerally.x=4±(P(t))216+16=4±P(t).Sox=4±P(t)ZiftZ.
Commented by Rasheed Soomro last updated on 24/Jan/16
G^(O^( v) O) D!
GOvOD!

Leave a Reply

Your email address will not be published. Required fields are marked *