Question Number 4423 by Rasheed Soomro last updated on 24/Jan/16
$$\mathrm{Determine}\:\mathrm{f}\left(\mathrm{t}\right)\:\mathrm{such}\:\mathrm{that}\:\forall\:\mathrm{t}\in\mathbb{Z} \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{8x}+\mathrm{f}\left(\mathrm{t}\right)\:\mathrm{has}\:\mathrm{integer}-\mathrm{solution}. \\ $$
Commented by Yozzii last updated on 24/Jan/16
$${Try}\:{f}\left({t}\right)={c};\:{c}\:{is}\:{a}\:{real}\:{constant}. \\ $$$${x}^{\mathrm{2}} −\mathrm{8}{x}−{c}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{8}\pm\sqrt{\mathrm{64}+\mathrm{4}{c}}}{\mathrm{2}} \\ $$$${x}=\frac{\mathrm{8}\pm\mathrm{2}\sqrt{\mathrm{16}+{c}}}{\mathrm{2}} \\ $$$${x}=\mathrm{4}\pm\sqrt{\mathrm{16}+{c}} \\ $$$${For}\:{x}\in\mathbb{Z}\subset\mathbb{R}\Rightarrow\mathrm{16}+{c}\geqslant\mathrm{0}\:\wedge\:\mathrm{16}+{c}={n}^{\mathrm{2}} \\ $$$${for}\:\forall\:{n}\in\mathbb{Z}^{+} +\left\{\mathrm{0}\right\}.\:{Hence}\:{f}\left({t}\right)={c} \\ $$$${for}\:{integer}\:{solutions}\:{x}\:{to}\:{exist}\:{for} \\ $$$${x}^{\mathrm{2}} =\mathrm{8}{x}+{f}\left({t}\right)\:{if}\:{c}={n}^{\mathrm{2}} −\mathrm{16}\:{for}\:\forall{n}\in\mathbb{Z}. \\ $$$$ \\ $$$${Checking}:\:{x}^{\mathrm{2}} =\mathrm{8}{x}+{n}^{\mathrm{2}} −\mathrm{16} \\ $$$${x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{16}−{n}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:{x}=\frac{\mathrm{8}\pm\sqrt{\mathrm{64}−\mathrm{64}+\mathrm{4}{n}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${x}=\frac{\mathrm{8}\pm\mathrm{2}{n}}{\mathrm{2}} \\ $$$${x}=\mathrm{4}\pm{n}\in\mathbb{Z}. \\ $$$$ \\ $$$$ \\ $$
Commented by Yozzii last updated on 24/Jan/16
$${x}^{\mathrm{2}} −\mathrm{8}{x}−{f}\left({t}\right)=\mathrm{0} \\ $$$${x}=\frac{\mathrm{8}\pm\sqrt{\mathrm{64}+\mathrm{4}{f}\left({t}\right)}}{\mathrm{2}}=\mathrm{4}\pm\sqrt{\mathrm{16}+{f}\left({t}\right)}. \\ $$$${f}\left({t}\right)\:,\:\forall{t}\in\mathbb{Z},{must}\:{satisfy}\:\left(\mathrm{1}\right)\:{f}\left({t}\right)\geqslant−\mathrm{16} \\ $$$${and}\:\left(\mathrm{2}\right)\:{f}\left({t}\right)+\mathrm{16}={N}^{\mathrm{2}} \:\:{where}\:{N}\in\mathbb{Z}. \\ $$$${Thus},\:{let}\:{t}={N}\Rightarrow{f}\left({t}\right)={t}^{\mathrm{2}} −\mathrm{16}. \\ $$$${This}\:{further}\:{suggests}\:{that}\:{f}\left({t}\right)=\left({P}\left({t}\right)\right)^{\mathrm{2}} −\mathrm{16} \\ $$$${where}\:{P}\left({t}\right)\:{is}\:{a}\:{polynomial}\:{in}\:{t}\:{with}\:{real} \\ $$$${integer}\:{coefficients}\:{generally}. \\ $$$$\therefore\:{x}=\mathrm{4}\pm\sqrt{\left({P}\left({t}\right)\right)^{\mathrm{2}} −\mathrm{16}+\mathrm{16}}=\mathrm{4}\pm{P}\left({t}\right). \\ $$$${So}\:{x}=\mathrm{4}\pm{P}\left({t}\right)\in\mathbb{Z}\:{if}\:{t}\in\mathbb{Z}. \\ $$
Commented by Rasheed Soomro last updated on 24/Jan/16
$$\mathrm{G}^{\mathcal{O}^{\:\mathrm{v}} \mathcal{O}} \mathrm{D}! \\ $$