Menu Close

Determine-i-d-dx-x-1-x-ii-x-1-x-dx-




Question Number 2007 by Rasheed Soomro last updated on 29/Oct/15
Determine  (i)  (d/dx)(x^(1/x) )               (ii) ∫ x^(1/x) dx
Determine(i)ddx(x1x)(ii)x1xdx
Answered by Yozzi last updated on 29/Oct/15
Let y=x^(1/x) .  If we take logarithms to base e, where  we assume x>0 (⇒y>0), we obtain  lny=lnx^(1/x)   ⇒lny=(1/x)lnx    (power rule of logs)  Differentiating the equation implicitly  w.r.t  x we have  (1/y)×(dy/dx)=(1/x)×(1/x)+((−1)/x^2 )lnx     ⇒(dy/dx)=y(1/x^2 )(1−lnx)  ∴ (d/dx)(x^(1/x) )=x^(1/x) ×(1/x^2 )(1−lnx)=x^((1/x)−2) (1−lnx)       (x>0)  Continue... (on to the integral which  looks difficult to find)
Lety=x1/x.Ifwetakelogarithmstobasee,whereweassumex>0(y>0),weobtainlny=lnx1/xlny=1xlnx(powerruleoflogs)Differentiatingtheequationimplicitlyw.r.txwehave1y×dydx=1x×1x+1x2lnxdydx=y1x2(1lnx)ddx(x1/x)=x1/x×1x2(1lnx)=x1x2(1lnx)(x>0)Continue(ontotheintegralwhichlooksdifficulttofind)

Leave a Reply

Your email address will not be published. Required fields are marked *