Menu Close

Determine-i-d-dx-x-x-ii-x-x-dx-




Question Number 2006 by Rasheed Soomro last updated on 29/Oct/15
Determine  (i)  (d/dx)(x^x )           (ii)  ∫x^x  dx
$${Determine} \\ $$$$\left({i}\right)\:\:\frac{{d}}{{dx}}\left({x}^{{x}} \right)\:\:\:\:\:\:\:\:\:\:\:\left({ii}\right)\:\:\int{x}^{{x}} \:{dx} \\ $$
Answered by 123456 last updated on 29/Oct/15
y=x^x ⇒(dy/dx)=x^x (1+ln x)  ln y=xln x  ((y′)/y)=ln x+1  (dy/dx)=y(1+ln x)=x^x (1+ln x)
$${y}={x}^{{x}} \Rightarrow\frac{{dy}}{{dx}}={x}^{{x}} \left(\mathrm{1}+\mathrm{ln}\:{x}\right) \\ $$$$\mathrm{ln}\:{y}={x}\mathrm{ln}\:{x} \\ $$$$\frac{{y}'}{{y}}=\mathrm{ln}\:{x}+\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}={y}\left(\mathrm{1}+\mathrm{ln}\:{x}\right)={x}^{{x}} \left(\mathrm{1}+\mathrm{ln}\:{x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *