Menu Close

Determine-if-the-series-n-1-a-n-defined-by-the-formula-converges-or-diverges-a-1-4-a-n-1-10-sin-n-n-a-n-




Question Number 140833 by liberty last updated on 13/May/21
Determine if the series Σ_(n=1) ^∞  a_n   defined by the  formula converges or  diverges . a_1 = 4 , a_(n+1)  = ((10+sin n)/n). a_n
Determineiftheseriesn=1andefinedbytheformulaconvergesordiverges.a1=4,an+1=10+sinnn.an
Commented by liberty last updated on 13/May/21
can anyone help me
can anyone help me
Answered by TheSupreme last updated on 13/May/21
(a_(n+1) /a_n )=((10+sin(n))/n)  lim (a_(n+1) /a_n )=0 → series converges
an+1an=10+sin(n)nliman+1an=0seriesconverges
Commented by liberty last updated on 13/May/21
why lim (a_(n+1) /a_n ) = 0? as n→?
whyliman+1an=0?asn?
Answered by mathmax by abdo last updated on 13/May/21
a_(n+1) =((10+sin(n))/n) a_n  ⇒(a_(n+1) /a_n )=((10+sin(n))/n) ⇒  Π_(k=1) ^(n−1)  (a_(k+1) /a_k ) =Π_(k=1) ^(n−1) (((10+sin(k))/k)) ⇒(a_2 /a_1 ).(a_3 /a_2 ).....(a_n /a_(n−1) )=(1/((n−1)!))Π_(k=1) ^(n−1) (10+sin(k)) ⇒  a_n =(4/((n−1)!))Π_(k=1) ^(n−1) (10+sin(k)) ⇒∣a_n ∣≤((4.11^n )/((n−1)!)) =v_n   (v_(n+1) /v_n ) =((4.11^(n+1) )/(n!))×(((n−1)!)/(4.11^n )) =((11)/n)→0(n→∞) ⇒Σ v_n  converges ⇒  Σ a_n  cv.
an+1=10+sin(n)nanan+1an=10+sin(n)nk=1n1ak+1ak=k=1n1(10+sin(k)k)a2a1.a3a2..anan1=1(n1)!k=1n1(10+sin(k))an=4(n1)!k=1n1(10+sin(k))⇒∣an∣⩽4.11n(n1)!=vnvn+1vn=4.11n+1n!×(n1)!4.11n=11n0(n)ΣvnconvergesΣancv.
Answered by physicstutes last updated on 13/May/21
a_(n+1)  = ((10 + sin n)/n) a_n   ⇒ (a_(n+1) /a_n ) = ((10 + sin n)/n) = ((10)/(n )) + ((sin n)/n)   lim_(n→∞) (a_(n+1) /a_n ) = lim_(n→∞)  (((10)/n)+((sin n)/n)) = 0 + 0  = 0 < 1  ⇒  Σ_(n=1) ^∞ a_n  converges by the ratio test.
an+1=10+sinnnanan+1an=10+sinnn=10n+sinnnlimnan+1an=limn(10n+sinnn)=0+0=0<1n=1anconvergesbytheratiotest.

Leave a Reply

Your email address will not be published. Required fields are marked *