Menu Close

Determine-interval-A-of-real-numbers-for-which-a-a-1-a-1-a-whenever-a-A-




Question Number 1716 by Rasheed Soomro last updated on 02/Sep/15
Determine interval A of real numbers for which  a^(a+1) ≥(a+1)^a       whenever a∈A
DetermineintervalAofrealnumbersforwhichaa+1(a+1)awheneveraA
Commented by Rasheed Ahmad last updated on 03/Sep/15
a^(a+1) ≥(a+1)^a   a^a .a≥a^a (1+(1/a))^a   We assume here a>0 because  for a<0   a^(a+1) ,(a+1)^a  may be   imaginary. (At a=0 the statement  is false)  So a>0⇒a^a >0  a^a .a≥a^a (1+(1/a))^a ⇒(1+(1/a))^a ≤a  (1+(1/a))^a ≤(a^(1/a) )^a   ⇒1+(1/a)≤a^(1/a)   a^(1/a) − (1/a) − 1≥ 0  a^(1/a) − (1/a) − 1=0 ∨ a^(1/a) − (1/a) − 1>0  [[With the help of graphing calculator  a≥2.293....]]  By using numeical methods....
aa+1(a+1)aaa.aaa(1+1a)aWeassumeherea>0becausefora<0aa+1,(a+1)amaybeimaginary.(Ata=0thestatementisfalse)Soa>0aa>0aa.aaa(1+1a)a(1+1a)aa(1+1a)a(a1a)a1+1aa1aa1a1a10a1a1a1=0a1a1a1>0[[Withthehelpofgraphingcalculatora2.293.]]Byusingnumeicalmethods.
Answered by 123456 last updated on 03/Sep/15
x^(x+1) ≥(x+1)^x   h(x)=x^(x+1) −(x+1)^x   h(x)<0⇔x^(x+1) <(x+1)^x   h(x)=0⇔x^(x+1) =(x+1)^x   h(x)>0⇔x^(x+1) =(x+1)^x   h(0)=h(1)=h(2)=−1  h(3)=17  for x∈[0,+∞) its continuous and since  h(2)<0<h(3) by inthermediare value theorem (rolle theorem)  ∃ξ∈[2,3],h(ξ)=0  comtinue
xx+1(x+1)xh(x)=xx+1(x+1)xh(x)<0xx+1<(x+1)xh(x)=0xx+1=(x+1)xh(x)>0xx+1=(x+1)xh(0)=h(1)=h(2)=1h(3)=17forx[0,+)itscontinuousandsinceh(2)<0<h(3)byinthermediarevaluetheorem(rolletheorem)ξ[2,3],h(ξ)=0comtinue
Commented by 123456 last updated on 03/Sep/15
h(x)=0, bissection method (≈ values)     a        b        x      h(a)     h(b)        h(x)  2,00∣3,00∣2,50∣−1,00∣+17,00∣+1,79  2,00∣2,50∣2,25∣−1,00∣+01,79∣−0,23  2,25∣2,50∣2,38∣−0,23∣+01,79∣+0,59  2,25∣2,38∣2,32∣−0,23∣+00,59∣+0,16  2,25∣2,32∣2,29∣−0,23∣+00,16∣−0,02  x≈2,29,∣h(x)∣≈0,02
h(x)=0,bissectionmethod(values)abxh(a)h(b)h(x)2,003,002,501,00+17,00+1,792,002,502,251,00+01,790,232,252,502,380,23+01,79+0,592,252,382,320,23+00,59+0,162,252,322,290,23+00,160,02x2,29,h(x)∣≈0,02
Commented by Rasheed Ahmad last updated on 03/Sep/15
Approach is really appreciable!
Approachisreallyappreciable!
Commented by Rasheed Ahmad last updated on 14/Sep/15
h(x)>0⇔x^(x+1)  > (x+1)^x
h(x)>0xx+1>(x+1)x

Leave a Reply

Your email address will not be published. Required fields are marked *