Question Number 1716 by Rasheed Soomro last updated on 02/Sep/15

Commented by Rasheed Ahmad last updated on 03/Sep/15
![a^(a+1) ≥(a+1)^a a^a .a≥a^a (1+(1/a))^a We assume here a>0 because for a<0 a^(a+1) ,(a+1)^a may be imaginary. (At a=0 the statement is false) So a>0⇒a^a >0 a^a .a≥a^a (1+(1/a))^a ⇒(1+(1/a))^a ≤a (1+(1/a))^a ≤(a^(1/a) )^a ⇒1+(1/a)≤a^(1/a) a^(1/a) − (1/a) − 1≥ 0 a^(1/a) − (1/a) − 1=0 ∨ a^(1/a) − (1/a) − 1>0 [[With the help of graphing calculator a≥2.293....]] By using numeical methods....](https://www.tinkutara.com/question/Q1723.png)
Answered by 123456 last updated on 03/Sep/15
![x^(x+1) ≥(x+1)^x h(x)=x^(x+1) −(x+1)^x h(x)<0⇔x^(x+1) <(x+1)^x h(x)=0⇔x^(x+1) =(x+1)^x h(x)>0⇔x^(x+1) =(x+1)^x h(0)=h(1)=h(2)=−1 h(3)=17 for x∈[0,+∞) its continuous and since h(2)<0<h(3) by inthermediare value theorem (rolle theorem) ∃ξ∈[2,3],h(ξ)=0 comtinue](https://www.tinkutara.com/question/Q1720.png)
Commented by 123456 last updated on 03/Sep/15

Commented by Rasheed Ahmad last updated on 03/Sep/15

Commented by Rasheed Ahmad last updated on 14/Sep/15
