Menu Close

Determine-lim-x-0-sin-x-1-x-




Question Number 4441 by Rasheed Soomro last updated on 27/Jan/16
Determine          lim_(x→0) (sin x)^(1/x)  .
Determinelimx0(sinx)1/x.
Commented by Yozzii last updated on 29/Jan/16
The limit does not exist.  l=lim_(x→0^− ) (sinx)^(1/x)   lnl=lim_(x→0^− ) (1/x)lnsinx.  For x→0^− , lnsinx∈C since sinx<0 and (1/x)→−∞.  ∴lnl∈C⇒l∈C. But, lim_(x→0^+ ) (sinx)^(1/x) =0.
Thelimitdoesnotexist.l=limx0(sinx)1/xlnl=limx01xlnsinx.Forx0,lnsinxCsincesinx<0and1x.lnlClC.But,limx0+(sinx)1/x=0.
Commented by Jens last updated on 29/Jan/16
Put y =1/x. Then sinx=sin(1/y)  ⇒1/y as y⇒∞ so (sinx)^(1/x) ⇒  (1/y)^y =1/y^y ⇒0 for y ⇒∞ so the  limit does exist!
Puty=1/x.Thensinx=sin(1/y)1/yasyso(sinx)1/x(1/y)y=1/yy0forysothelimitdoesexist!
Commented by Yozzii last updated on 30/Jan/16
For a limit of f(x) to exist near x=a we need that   lim_(x→a^+ ) f(x)=lim_(x→a^− ) f(x).  By letting x=1/y⇒y=1/x  ∴ as x→0^− ⇒y→−∞  as x→0^+ ⇒y→∞  If the limit exists then we require  lim_(y→−∞) (sin((1/y)))^y =lim_(y→+∞) (sin((1/y)))^y   But, while lim_(y→∞) (sin(1/y))^y =(sin(+0))^∞ =+0   lim_(y→−∞) (sin(1/y))^y =(sin(−0))^(−∞) =(1/((sin(−0))^∞ ))=(1/(−0))   which is undefined.
Foralimitoff(x)toexistnearx=aweneedthatlimxa+f(x)=limxaf(x).Bylettingx=1/yy=1/xasx0yasx0+yIfthelimitexiststhenwerequirelimy(sin(1y))y=limy+(sin(1y))yBut,whilelimy(sin(1/y))y=(sin(+0))=+0limy(sin(1/y))y=(sin(0))=1(sin(0))=10whichisundefined.
Commented by Yozzii last updated on 30/Jan/16
Commented by Yozzii last updated on 30/Jan/16
For negative x near zero,   no real value of (sinx)^(1/x)  exists.
Fornegativexnearzero,norealvalueof(sinx)1/xexists.

Leave a Reply

Your email address will not be published. Required fields are marked *