Question Number 5742 by Rasheed Soomro last updated on 26/May/16
$$\bullet{Determine}\:{S} \\ $$$${S}={a}^{\mathrm{2}} +{ar}\left({a}+{r}\right)+{ar}^{\mathrm{2}} \left({a}+\mathrm{2}{r}\right)+…+{ar}^{{n}−\mathrm{1}} \left\{{a}+\left({n}−\mathrm{1}\right)\:{r}\right\}. \\ $$$$ \\ $$
Answered by Yozzii last updated on 26/May/16
$${S}={a}^{\mathrm{2}} +{ar}\left({a}+{r}\right)+{ar}^{\mathrm{2}} \left({a}+\mathrm{2}{r}\right)+{ar}^{\mathrm{3}} \left({a}+\mathrm{3}{r}\right)…+{ar}^{{n}−\mathrm{1}} \left\{{a}+\left({n}−\mathrm{1}\right){r}\right\} \\ $$$${rS}={a}^{\mathrm{2}} {r}+{ar}^{\mathrm{2}} \left({a}+{r}\right)+{ar}^{\mathrm{3}} \left({a}+\mathrm{2}{r}\right)+{ar}^{\mathrm{4}} \left({a}+\mathrm{4}{r}\right)+…+{ar}^{{n}−\mathrm{1}} \left({a}+\left({n}−\mathrm{2}\right){r}\right)+{ar}^{{n}} \left({a}+\left({n}−\mathrm{1}\right){r}\right) \\ $$$${rS}=\mathrm{0}+\left({a}^{\mathrm{2}} {r}\right)+\mathrm{0}+\left({a}^{\mathrm{2}} {r}^{\mathrm{2}} \right)+\mathrm{0}+\left({ar}^{\mathrm{3}} \right)+\mathrm{0}+\left({a}^{\mathrm{2}} {r}^{\mathrm{3}} \right)+\left(\mathrm{2}{ar}^{\mathrm{4}} \right)+{a}^{\mathrm{2}} {r}^{\mathrm{4}} +\mathrm{4}{ar}^{\mathrm{5}} +…+\left({a}^{\mathrm{2}} {r}^{{n}−\mathrm{1}} \right)+\left({n}−\mathrm{2}\right){ar}^{{n}} +{a}^{\mathrm{2}} {r}^{{n}} +{ar}^{{n}+\mathrm{1}} \left({n}−\mathrm{1}\right) \\ $$$$\:\:{S}={a}^{\mathrm{2}} +\left({a}^{\mathrm{2}} {r}\right)+{ar}^{\mathrm{2}} +\left({a}^{\mathrm{2}} {r}^{\mathrm{2}} \right)+\left(\mathrm{2}{ar}^{\mathrm{3}} \right)+\left({a}^{\mathrm{2}} {r}^{\mathrm{3}} \right)+\left(\mathrm{3}{ar}^{\mathrm{4}} \right)+…+\left({a}^{\mathrm{2}} {r}^{{n}−\mathrm{1}} \right)+\left({n}−\mathrm{1}\right){ar}^{{n}} \\ $$$$\Rightarrow\left({r}−\mathrm{1}\right){S}=−{a}^{\mathrm{2}} −{ar}^{\mathrm{2}} −{ar}^{\mathrm{3}} −{ar}^{\mathrm{4}} −…−{ar}^{{n}} −{ar}^{{n}+\mathrm{1}} +{a}^{\mathrm{2}} {r}^{{n}} +{nar}^{{n}+\mathrm{1}} \\ $$$$\left({r}−\mathrm{1}\right){S}={a}^{\mathrm{2}} {r}^{{n}} −{a}^{\mathrm{2}} −{ar}^{\mathrm{2}} \left(\mathrm{1}+{r}+{r}^{\mathrm{2}} +…+{r}^{{n}−\mathrm{2}} +{r}^{{n}−\mathrm{1}} \right)+{nar}^{{n}+\mathrm{1}} \\ $$$$\left({r}−\mathrm{1}\right){S}={a}^{\mathrm{2}} \left({r}^{{n}} −\mathrm{1}\right)+{nar}^{{n}+\mathrm{1}} −\frac{{ar}^{\mathrm{2}} \left({r}^{{n}} −\mathrm{1}\right)}{\left({r}−\mathrm{1}\right)} \\ $$$${S}=\frac{{r}^{{n}} −\mathrm{1}}{{r}−\mathrm{1}}\left({a}^{\mathrm{2}} −\frac{{ar}^{\mathrm{2}} }{{r}−\mathrm{1}}\right)+\frac{{nar}^{{n}+\mathrm{1}} }{{r}−\mathrm{1}} \\ $$$${S}=\frac{{nar}^{{n}+\mathrm{1}} }{{r}−\mathrm{1}}+\frac{{a}\left({r}^{{n}} −\mathrm{1}\right)\left({a}\left({r}−\mathrm{1}\right)−{r}^{\mathrm{2}} \right)}{\left({r}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${S}=\frac{{nar}^{{n}+\mathrm{1}} +{a}^{\mathrm{2}} \left({r}^{{n}} −\mathrm{1}\right)}{{r}−\mathrm{1}}−\frac{{ar}^{\mathrm{2}} \left({r}^{{n}} −\mathrm{1}\right)}{\left({r}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${If}\:{r}<\mathrm{1}\:{S}\:{can}\:{be}\:{divergent}\:{e}.{g}\:{let}\:{r}=−\mathrm{56}. \\ $$$$ \\ $$
Commented by Rasheed Soomro last updated on 26/May/16
$$\mathcal{T}{hank}\mathcal{S}! \\ $$