Menu Close

Determine-smallest-n-0-for-which-i-n-1-




Question Number 8336 by Rasheed Soomro last updated on 08/Oct/16
Determine smallest n(≠0), for which  (ω+i)^n =1.
Determinesmallestn(0),forwhich(ω+i)n=1.
Commented by prakash jain last updated on 08/Oct/16
w=cos ((2π)/3)+isin ((2π)/3)=−(1/2)+i((√3)/2)  w+i=−(1/2)+i(((√3)/2)+1)  ∣w+i∣=(√(((1/2))^2 +(((√3)/2)+1)^2 ))  =(√((1/4)+1+(3/(4+2(√3)))))=(√(2+(√3)))  Since ∣w+i∣=(√(2+(√3)))  of (w+i)^n =1⇒n=0  There is no value of n≠0 for which  (w+i)^n =1
w=cos2π3+isin2π3=12+i32w+i=12+i(32+1)w+i∣=(12)2+(32+1)2=14+1+34+23=2+3Sincew+i∣=2+3of(w+i)n=1n=0Thereisnovalueofn0forwhich(w+i)n=1
Commented by Rasheed Soomro last updated on 09/Oct/16
Thanks a lot!
Thanksalot!

Leave a Reply

Your email address will not be published. Required fields are marked *