Menu Close

Determine-the-complex-number-z-such-that-z-2-tanx-icosx-in-the-form-z-p-ik-p-k-R-




Question Number 558 by 112358 last updated on 26/Jan/15
Determine the complex number  z such that z^2 =tanx+icosx,  in the form z=p+ik, p,k∈R.
Determinethecomplexnumberzsuchthatz2=tanx+icosx,intheformz=p+ik,p,kR.
Answered by prakash jain last updated on 26/Jan/15
(p+ik)^2 =tan x+i cos x  (p^2 −k^2 )+2ipk=tan x+i cos x  tan x=p^2 −k^2 ⇒k^2 =p^2 −tan x  cos x=2pk  cos^2 x=4p^2 (p^2 −tan x)  4p^4 −4p^2 tan x−cos^2 x=0  p^2 =((4tan x±(√(16tan^2 x+16cos^2 x)))/8)  p^2 =((tan x+(√(tan^2 x+cos^2 x)))/2)  k^2 =p^2 −tan x  k^2 =(((√(tan^2 x+cos^2 x))−tan x)/2)  p=±(√(((√(tan^2 x+cos^2 +))tan x)/2))  q=±(√(((√(tan^2 x+cos^2 x))−tan x)/2))  Check  p^2 −q^2 =tan x  2pq=2×±(√(((√(tan^2 x+cos^2 x))+tan x)/2))×±(√(((√(tan^2 x+cos^2 x))+tan x)/2))  =(±×±)∙2∙(√((tan^2 x+ cos^2 x−tan^2 x)/4))=cos x
(p+ik)2=tanx+icosx(p2k2)+2ipk=tanx+icosxtanx=p2k2k2=p2tanxcosx=2pkcos2x=4p2(p2tanx)4p44p2tanxcos2x=0p2=4tanx±16tan2x+16cos2x8p2=tanx+tan2x+cos2x2k2=p2tanxk2=tan2x+cos2xtanx2p=±tan2x+cos2+tanx2q=±tan2x+cos2xtanx2Checkp2q2=tanx2pq=2×±tan2x+cos2x+tanx2×±tan2x+cos2x+tanx2=(±×±)2tan2x+cos2xtan2x4=cosx

Leave a Reply

Your email address will not be published. Required fields are marked *