Menu Close

Determine-the-following-sum-in-terms-of-n-S-n-i-1-n-i-2-q-i-1-where-0-lt-q-lt-1-For-the-distribution-of-the-discrete-random-variable-X-given-as-




Question Number 683 by 112358 last updated on 24/Feb/15
Determine the following sum in  terms of n.                             S_n =Σ_(i=1) ^n i^2 q^(i−1)   where 0 < q < 1.  For the distribution of the discrete  random variable X given as                            X∽Geo(p)  prove that                            Var(X)=(q/p^2 )  where q=1−p, if   Var(X)=Σ{x^2 P(X=x)}−E^2 (X)  for a given discrete random   variable X.
Determinethefollowingsumintermsofn.Sn=ni=1i2qi1where0<q<1.ForthedistributionofthediscreterandomvariableXgivenasXGeo(p)provethatVar(X)=qp2whereq=1p,ifVar(X)=Σ{x2P(X=x)}E2(X)foragivendiscreterandomvariableX.
Commented by prakash jain last updated on 24/Feb/15
S_n =1^2 +2^2 q+3^2 q^2 +4^2 q^3 +... +n^2 q^(n−1)         ....(i)  qS_n =     1^2 q   +2^2 q^2 +3^2 q^2 +...+(n−1)^2 q^(n−1) +n^2 q^n     ...(ii)  Subtracting (ii) from (i)  (1−q)S_n =1+3q+5q^2 +.....+(2n−1)q^(n−1) −n^2 q^n     ...(iii)  q(1−q)S_n =         q+3q^2 +.....+(2n−3)q^(n−1) +(2n−1)q^n −n^2 q^(n+1) ...(iv)  Subtracting (iv) from (iii)  (1−q)^2 S_n =1+2q+2q^2 +..+2q^(n−1) −(n^2 −2n+1)q^n +n^2 q^(n+1)   (1−q)^2 S_n =1+2  ((q−q^n )/(1−q))−(n−1)^2 q^n +n^2 q^(n+1)   S_n =(1/((1−q)^2 ))[1+2((q−q^n )/(1−q))−(n−1)^2 q^n +n^2 q^(n+1) ]  I don′t think you can calculate S_n  only in terms  of n (you will also need q)
Sn=12+22q+32q2+42q3++n2qn1.(i)qSn=12q+22q2+32q2++(n1)2qn1+n2qn(ii)Subtracting(ii)from(i)(1q)Sn=1+3q+5q2+..+(2n1)qn1n2qn(iii)q(1q)Sn=q+3q2+..+(2n3)qn1+(2n1)qnn2qn+1(iv)Subtracting(iv)from(iii)(1q)2Sn=1+2q+2q2+..+2qn1(n22n+1)qn+n2qn+1(1q)2Sn=1+2qqn1q(n1)2qn+n2qn+1Sn=1(1q)2[1+2qqn1q(n1)2qn+n2qn+1]IdontthinkyoucancalculateSnonlyintermsofn(youwillalsoneedq)
Commented by 112358 last updated on 24/Feb/15
Would it be safe to assume that q  is a constant such that q∈(0,1)?
Woulditbesafetoassumethatqisaconstantsuchthatq(0,1)?
Commented by prakash jain last updated on 24/Feb/15
For a give distribution as mention in problem  q=1−p  so q is independent of i and n. So it is a  constant for the summation.
Foragivedistributionasmentioninproblemq=1psoqisindependentofiandn.Soitisaconstantforthesummation.
Answered by prakash jain last updated on 24/Feb/15
Expected Value  E(x)=Σ_(i=1) ^∞ i.(1−p)^(i−1) p  E=                 p+2(1−p)p+3(1−p)^2 p+...  (1−p)E=     +(1−p)p+2(1−p)^2 p+...  pE =p+(1−p)p+(1−p)^2 p+..  pE=(p/(1−(1−p)))=1⇒E(x)=(1/p)  Variance  Var(x)=Σ_(i=1) ^∞ i^2 (1−p)^(i−1) p−[E(x)]^2         (i)  S=Σ_(i=1) ^∞ i^2 (1−p)^(i−1) p  S=p+2^2 (1−p)p+3^2 (1−p)^2 p+..  (1−p)S=(1−p)p+2^2 (1−p)^2 p+...  Subtracting  pS=p+3(1−p)p+5(1−p)^2 p+...  S=1+3(1−p)+5(1−p)^2 +...  (1−p)S=(1−p)+3(1−p)^2 +5(1−p)^3 +..  Subtracting  pS=1+2(1−p)+2(1−p)^2 +...  pS=1+((2(1−p))/(1−(1−p)))=1+((2−2p)/p)=(2/p)−1  S=(2/p^2 ) −(1/p)  Substituting S in (i)  Var(x)=(2/p^2 ) −(1/p)−[E(x)]^2 =(2/p^2 ) −(1/p) −(1/p^2 )  =(1/p^2 )−(1/p)=((1−p)/p^2 )=(q/p^2 )
ExpectedValueE(x)=i=1i.(1p)i1pE=p+2(1p)p+3(1p)2p+(1p)E=+(1p)p+2(1p)2p+pE=p+(1p)p+(1p)2p+..pE=p1(1p)=1E(x)=1pVarianceVar(x)=i=1i2(1p)i1p[E(x)]2(i)S=i=1i2(1p)i1pS=p+22(1p)p+32(1p)2p+..(1p)S=(1p)p+22(1p)2p+SubtractingpS=p+3(1p)p+5(1p)2p+S=1+3(1p)+5(1p)2+(1p)S=(1p)+3(1p)2+5(1p)3+..SubtractingpS=1+2(1p)+2(1p)2+pS=1+2(1p)1(1p)=1+22pp=2p1S=2p21pSubstitutingSin(i)Var(x)=2p21p[E(x)]2=2p21p1p2=1p21p=1pp2=qp2

Leave a Reply

Your email address will not be published. Required fields are marked *