Question Number 683 by 112358 last updated on 24/Feb/15

Commented by prakash jain last updated on 24/Feb/15
![S_n =1^2 +2^2 q+3^2 q^2 +4^2 q^3 +... +n^2 q^(n−1) ....(i) qS_n = 1^2 q +2^2 q^2 +3^2 q^2 +...+(n−1)^2 q^(n−1) +n^2 q^n ...(ii) Subtracting (ii) from (i) (1−q)S_n =1+3q+5q^2 +.....+(2n−1)q^(n−1) −n^2 q^n ...(iii) q(1−q)S_n = q+3q^2 +.....+(2n−3)q^(n−1) +(2n−1)q^n −n^2 q^(n+1) ...(iv) Subtracting (iv) from (iii) (1−q)^2 S_n =1+2q+2q^2 +..+2q^(n−1) −(n^2 −2n+1)q^n +n^2 q^(n+1) (1−q)^2 S_n =1+2 ((q−q^n )/(1−q))−(n−1)^2 q^n +n^2 q^(n+1) S_n =(1/((1−q)^2 ))[1+2((q−q^n )/(1−q))−(n−1)^2 q^n +n^2 q^(n+1) ] I don′t think you can calculate S_n only in terms of n (you will also need q)](https://www.tinkutara.com/question/Q684.png)
Commented by 112358 last updated on 24/Feb/15

Commented by prakash jain last updated on 24/Feb/15

Answered by prakash jain last updated on 24/Feb/15
![Expected Value E(x)=Σ_(i=1) ^∞ i.(1−p)^(i−1) p E= p+2(1−p)p+3(1−p)^2 p+... (1−p)E= +(1−p)p+2(1−p)^2 p+... pE =p+(1−p)p+(1−p)^2 p+.. pE=(p/(1−(1−p)))=1⇒E(x)=(1/p) Variance Var(x)=Σ_(i=1) ^∞ i^2 (1−p)^(i−1) p−[E(x)]^2 (i) S=Σ_(i=1) ^∞ i^2 (1−p)^(i−1) p S=p+2^2 (1−p)p+3^2 (1−p)^2 p+.. (1−p)S=(1−p)p+2^2 (1−p)^2 p+... Subtracting pS=p+3(1−p)p+5(1−p)^2 p+... S=1+3(1−p)+5(1−p)^2 +... (1−p)S=(1−p)+3(1−p)^2 +5(1−p)^3 +.. Subtracting pS=1+2(1−p)+2(1−p)^2 +... pS=1+((2(1−p))/(1−(1−p)))=1+((2−2p)/p)=(2/p)−1 S=(2/p^2 ) −(1/p) Substituting S in (i) Var(x)=(2/p^2 ) −(1/p)−[E(x)]^2 =(2/p^2 ) −(1/p) −(1/p^2 ) =(1/p^2 )−(1/p)=((1−p)/p^2 )=(q/p^2 )](https://www.tinkutara.com/question/Q688.png)