Menu Close

Determine-the-smallest-value-of-the-form-f-u-v-5v-2-5u-2-1-2u-v-where-u-v-R-




Question Number 514 by 112358 last updated on 25/Jan/15
Determine the smallest value of  the form  f(u,v)=((5v^2 +5u^2 +1)/(2u+v))  where u,v∈R^+ .
Determinethesmallestvalueoftheformf(u,v)=5v2+5u2+12u+vwhereu,vR+.
Answered by prakash jain last updated on 23/Jan/15
(∂f/∂u)=0⇒(2u+v)(10u)−(5u^2 +5v^2 +1)∙2=0  ⇒20u^2 +10uv−10u^2 −10v^2 −2=0  ⇒5u^2 +5uv−5v^2 −1=0               ....(i)  (∂f/∂v)=0⇒(2u+v)(10v)−(5u^2 +5v^2 +1)=0  ⇒−5u^2 +20uv+5v^2 −1=0        ...(ii)  Adding (i) and (ii)  25uv=2  5u^2 +((10)/(25))−5((2/(25u)))^2 −1=0  5u^2 −(4/(125u^2 ))−(3/5)=0  625u^4 −75u^2 −4=0  u^2 =((75±(√((75)^2 +16(625))))/(2×625))=((3±(√(3^2 +16)))/(2×25))=(8/(50))=(4/(25))  u=(2/5), v=(1/5)  f(u,v)=2  Some additional test are needed with  double derivatives to confirm that ((2/5),(1/5))  is a minima.
fu=0(2u+v)(10u)(5u2+5v2+1)2=020u2+10uv10u210v22=05u2+5uv5v21=0.(i)fv=0(2u+v)(10v)(5u2+5v2+1)=05u2+20uv+5v21=0(ii)Adding(i)and(ii)25uv=25u2+10255(225u)21=05u24125u235=0625u475u24=0u2=75±(75)2+16(625)2×625=3±32+162×25=850=425u=25,v=15f(u,v)=2Someadditionaltestareneededwithdoublederivativestoconfirmthat(25,15)isaminima.

Leave a Reply

Your email address will not be published. Required fields are marked *