Menu Close

Determine-the-value-of-S-pi-if-S-is-the-sum-in-radians-all-equation-solutions-contained-in-the-interval-0-14pi-the-equation-is-cos-x-cos-5-x-cos-7x-3-




Question Number 131097 by dw last updated on 01/Feb/21
Determine the value of (S/π), if S is the sum, in radians,  all equation solutions contained in the interval [0,14π].    the equation is:  cos(x)+cos^5 (x)+cos(7x)=3
DeterminethevalueofSπ,ifSisthesum,inradians,allequationsolutionscontainedintheinterval[0,14π].theequationis:cos(x)+cos5(x)+cos(7x)=3
Answered by MJS_new last updated on 01/Feb/21
the only solution is cos x =1  ⇒ x=2nπ  ⇒ S=2π(0+1+2+...+14)=210π  ⇒ answer is 210
theonlysolutioniscosx=1x=2nπS=2π(0+1+2++14)=210πansweris210
Commented by dw last updated on 01/Feb/21
Sir^� , how could I prove it?
Sir¯,howcouldIproveit?
Commented by dw last updated on 01/Feb/21
Thank you for your solution.
Thankyouforyoursolution.
Answered by MJS_new last updated on 01/Feb/21
cos x +cos^5  x +cos 7x −3=0  with  cos 7x =64cos^7  x −112cos^5  x +56cos^3  x −7cos x  and  c=cos x  we have  64c^7 −111c^5 +56c^3 −6c−3=0  trying factors of the constant {±1, ±3} we  get  c_1 =1  f=64c^6 +64c^5 −47c^4 −47c^3 +9c^2 +9c+3  this has no real solution  f′=384c^5 +320c^4 −188c^3 −141c^2 +18c+9  this has the zeros  c_1 ≈−.891 ⇒ f≈1.83  c_2 ≈−.608 ⇒ f≈2.91  c_3 ≈−.238 ⇒ f≈1.81  c_4 ≈.302 ⇒ f≈5.06  c_5 ≈.601 ⇒ f≈3.36  ⇒ the absolute minimum of f is ≈1.81  ⇒ no more zeros  ⇒  c=1
cosx+cos5x+cos7x3=0withcos7x=64cos7x112cos5x+56cos3x7cosxandc=cosxwehave64c7111c5+56c36c3=0tryingfactorsoftheconstant{±1,±3}wegetc1=1f=64c6+64c547c447c3+9c2+9c+3thishasnorealsolutionf=384c5+320c4188c3141c2+18c+9thishasthezerosc1.891f1.83c2.608f2.91c3.238f1.81c4.302f5.06c5.601f3.36theabsoluteminimumoffis1.81nomorezerosc=1
Commented by dw last updated on 01/Feb/21
Thank you Sir!!
ThankyouSir!!