Menu Close

Determine-the-values-of-m-R-for-which-the-function-f-x-1-2x-2-mx-m-is-the-set-of-real-numbers-




Question Number 74265 by Maclaurin Stickker last updated on 21/Nov/19
Determine the values of m∈R for   which the function f(x)=(1/( (√(2x^2 −mx+m))))  is the set of real numbers.
DeterminethevaluesofmRforwhichthefunctionf(x)=12x2mx+misthesetofrealnumbers.
Answered by MJS last updated on 21/Nov/19
2x^2 −mx+m=0  x=((m±(√(m(m−8))))/4)  to get no zeros:  m(m−8)<0  ⇒ 0<m<8  for 0<m<8: ∀x∈R: 2x^2 −mx+m>0  in this case f(x) is defined for x∈R but the  range is 0<f(x)≤((2(√2))/( (√(8m−m^2 ))))
2x2mx+m=0x=m±m(m8)4togetnozeros:m(m8)<00<m<8for0<m<8:xR:2x2mx+m>0inthiscasef(x)isdefinedforxRbuttherangeis0<f(x)228mm2

Leave a Reply

Your email address will not be published. Required fields are marked *