Menu Close

Determine-three-complex-numbers-such-that-2-but-2-2-but-2-2-but-2-




Question Number 1540 by Rasheed Soomro last updated on 17/Aug/15
Determine three complex numbers α , β ,γ  such that  α=β^( 2)        but    β ≠ α^( 2)   β = γ^( 2)       but     γ ≠ β^( 2)   γ = α^( 2 )      but     α ≠ γ^( 2)
Determinethreecomplexnumbersα,β,γsuchthatα=β2butβα2β=γ2butγβ2γ=α2butαγ2
Answered by 123456 last updated on 17/Aug/15
 { ((α=β^2 ∧β≠α^2 )),((β=γ^2 ∧γ≠β^2 )),((γ=α^2 ∧α≠γ^2 )) :}≡ { ((α=β^2 ∧β≠γ)),((β=γ^2 ∧γ≠α)),((γ=α^2 ∧α≠β)) :}  α=β^2 =(γ^2 )^2 =[(α^2 )^2 ]^2 =α^(2×2×2) =α^8   α^8 −α=0  α(α^7 −1)=0  α=0∨α^7 =1  α=0⇒γ=0⇒γ^2 =α  α=e^(((2π)/7)kı) ,k∈Z_7   γ=α^2 =e^(((4π)/7)kı)   β=γ^2 =e^(((8π)/7)kı)   (α,β,γ)=(e^(((2π)/7)kı) ,e^(((8π)/7)kı) ,e^(((4π)/7)kι) )  β≠α^2 ⇒e^(((8π)/7)kı) ≠e^(((4π)/7)kı) (k≠0)  γ≠β^2 ⇒e^(((4π)/7)kı) ≠e^(((16π)/7)kı) =e^(((2π)/7)kı) (k≠0)  α≠γ^2 ⇒e^(((2π)/7)kı) ≠e^(((8π)/7)kı) (k≠0)  (α,β,γ)=(e^(((2π)/7)kı) ,e^(((8π)/7)kı) ,e^(((4π)/7)kı) ),k∈Z_7 \{0}
{α=β2βα2β=γ2γβ2γ=α2αγ2{α=β2βγβ=γ2γαγ=α2αβα=β2=(γ2)2=[(α2)2]2=α2×2×2=α8α8α=0α(α71)=0α=0α7=1α=0γ=0γ2=αα=e2π7kı,kZ7γ=α2=e4π7kıβ=γ2=e8π7kı(α,β,γ)=(e2π7kı,e8π7kı,e4π7kι)βα2e8π7kıe4π7kı(k0)γβ2e4π7kıe16π7kı=e2π7kı(k0)αγ2e2π7kıe8π7kı(k0)(α,β,γ)=(e2π7kı,e8π7kı,e4π7kı),kZ7{0}
Commented by 123456 last updated on 17/Aug/15
(ω,ω^4 ,ω^2 )  (ω^2 ,ω,ω^4 )  (ω^3 ,ω^5 ,ω^6 )  (ω^4 ,ω^2 ,ω)  (ω^5 ,ω^6 ,ω^3 )  (ω^6 ,ω^3 ,ω^5 )
(ω,ω4,ω2)(ω2,ω,ω4)(ω3,ω5,ω6)(ω4,ω2,ω)(ω5,ω6,ω3)(ω6,ω3,ω5)

Leave a Reply

Your email address will not be published. Required fields are marked *