Menu Close

Determine-x-4-1-x-4-if-x-2-1-x-2-34-




Question Number 8148 by Rasheed Soomro last updated on 02/Oct/16
Determine x^4 − (1/x^4 ) , if x^2 + (1/x^2 )=34 .
Determinex41x4,ifx2+1x2=34.
Commented by sou1618 last updated on 02/Oct/16
set X=x^2 ≥0  X+(1/X)=34    (X−(1/X))^2 =(X+(1/X))^2 −4=34^2 −2^2 =36×32  ⇒  X−(1/X)=±24(√2)    X^2 −(1/X^2 )=(X+(1/X))(X−(1/X))=34×(±24(√2))  =±816(√2)
setX=x20X+1X=34(X1X)2=(X+1X)24=34222=36×32X1X=±242X21X2=(X+1X)(X1X)=34×(±242)=±8162
Commented by Rasheed Soomro last updated on 02/Oct/16
ThankS!   G •^(⌢)   •_(⌣^ ) ^(⌢) D approach!
ThankS!GDapproach!
Answered by trapti rathaur@ gmail.com last updated on 02/Oct/16
(x^2 +(1/x^2 ))^2 =x^4 +(1/x^4 )+2×x^2 ×(1/(x2))     34×34=x^4 +(1/x^4 )+2       x^4 +(1/x^4 )=1154                                                     using (a+b)^2 =(a−b)^2 +4ab  (x^4 +(1/x^4 ))^2 =(x^4 −(1/x^4 ))^2 +4×x^4 ×(1/x^4 )  (1154)^2 =(x^4 −(1/x^4 ))^2 +4  (x^4 −(1/x^4 ))^2 =(1154)^2 −(2)^2       (x^4 −(1/x^4 ))=(√(1331712))                         =816(√2)             ANSWER−                                          (x^4 −(1/x^4 ))=816(√2)
Missing \left or extra \right34×34=x4+1x4+2x4+1x4=1154Missing \left or extra \rightMissing \left or extra \right(1154)2=(x41x4)2+4(x41x4)2=(1154)2(2)2(x41x4)=1331712=8162ANSWER(x41x4)=8162
Commented by Rasheed Soomro last updated on 02/Oct/16
ThankS!  You lost one answer by taking only +ve  squareroot of 1331712 :      (x^4 −(1/x^4 ))=(√(1331712))  You should have written                     (x^4 −(1/x^4 ))=±(√(1331712))=±816(√2)
ThankS!Youlostoneanswerbytakingonly+vesquarerootof1331712:(x41x4)=1331712Youshouldhavewritten(x41x4)=±1331712=±8162
Commented by trapti rathaur@ gmail.com last updated on 02/Oct/16
thanks.i forget it
thanks.iforgetit
Answered by Rasheed Soomro last updated on 02/Oct/16
x^2 + (1/x^2 )=34  ,  x^4 − (1/x^4 )=?  Approach:  x^2 + (1/x^2 )→ { ((x+ (1/x))),((x− (1/x))) :}    →x^2 − (1/x^2 )∧x^2 + (1/x^2 )→x^4 − (1/x^4 )  x^2 + (1/x^2 )=34  x^2 +2+ (1/x^2 )=34+2   ∧   x^2 −2+ (1/x^2 )=34−2  (x+(1/x))^2 =(±6)^2      ∧   (x−(1/x))^2 =(±4(√2) )^2   x+(1/x)=±6  ∧ x−(1/x)=±4(√2)                                                            ⇒x^2 − (1/x^2 )=±24(√2)   {: ((x^2 − (1/x^2 )=±24(√2))),((              ×                           )),((x^2 + (1/x^2 )=34 (given))) }⇒x^4 −(1/x^4 )=±816(√2)
x2+1x2=34,x41x4=?Approach:x2+1x2{x+1xx1xx21x2x2+1x2x41x4x2+1x2=34x2+2+1x2=34+2x22+1x2=342(x+1x)2=(±6)2(x1x)2=(±42)2x+1x=±6x1x=±42x21x2=±242x21x2=±242×x2+1x2=34(given)}x41x4=±8162

Leave a Reply

Your email address will not be published. Required fields are marked *