Menu Close

Determiner-l-origine-de-laplace-1-F-p-p-p-2-2-




Question Number 143523 by lapache last updated on 15/Jun/21
Determiner l′origine de laplace  1−F(p)=(p/((p+2)^2 ))
$${Determiner}\:{l}'{origine}\:{de}\:{laplace} \\ $$$$\mathrm{1}−{F}\left({p}\right)=\frac{{p}}{\left({p}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$
Answered by Dwaipayan Shikari last updated on 15/Jun/21
F(p)=1−(p/((p+2)^2 ))  L^(−1) (F(p))=L^(−1) (1−(p/((p+2)^2 )))  f(t)=p−L^(−1) ((1/(p+2)))+L^(−1) ((2/((p+2)^2 )))  =pt^0 −e^(−2t) −2te^(−2t)
$${F}\left({p}\right)=\mathrm{1}−\frac{{p}}{\left({p}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$\mathscr{L}^{−\mathrm{1}} \left({F}\left({p}\right)\right)=\mathscr{L}^{−\mathrm{1}} \left(\mathrm{1}−\frac{{p}}{\left({p}+\mathrm{2}\right)^{\mathrm{2}} }\right) \\ $$$${f}\left({t}\right)={p}−\mathscr{L}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{p}+\mathrm{2}}\right)+\mathscr{L}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\left({p}+\mathrm{2}\right)^{\mathrm{2}} }\right) \\ $$$$={pt}^{\mathrm{0}} −{e}^{−\mathrm{2}{t}} −\mathrm{2}{te}^{−\mathrm{2}{t}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *