Menu Close

developp-at-fourier-serie-f-x-3-1-2cosx-by-use-of-two-methods-




Question Number 143380 by Mathspace last updated on 13/Jun/21
developp at fourier serie  f(x)=(3/(1+2cosx))  by use of two methods
developpatfourierserief(x)=31+2cosxbyuseoftwomethods
Answered by mathmax by abdo last updated on 14/Jun/21
method 1   f(x)=(3/(1+2cosx))=(3/(1+2((e^(ix) +e^(−ix) )/2)))=(3/(1+e^(ix)  +e^(−ix) ))  =_(e^(ix) =z)      (3/(1+z +z^(−1) ))=((3z)/(z+z^2  +1))=((3z)/(z^2  +z+1))=Ψ(z)  z^2  +z+1=0→Δ=−3  ⇒z_1 =((−1+i(√3))/2)=e^((2iπ)/3)  and z_2 =((−1−i(√3))/2)=e^(−((2iπ)/3))   ⇒Ψ(z)=((3z)/((z−z_1 )(z−z_2 ))) =((3z)/(z_1 −z_2 ))((1/(z−z_1 ))−(1/(z−z_2 )))  =(3/(i(√3)))((z/(z−z_1 ))−(z/(z−z_2 )))=−i(√3)(((z−z_1 +z_1 )/(z−z_1 ))−((z−z_2 +z_2 )/(z−z_2 )))  =−i(√3)((z_1 /(z−z_1 ))−(z_2 /(z−z_2 )))=i(√3)((z_1 /(z_1 −z))−(z_2 /(z_2 −z)))  =i(√3){(1/(1−(z/z_1 )))−(1/(1−(z/z_2 )))} we have ∣(z/z_1 )∣=∣(z/z_2 )∣=1 ⇒  Ψ(z)=i(√3)(Σ_(n=0) ^∞  (z^n /z_1 ^n )−Σ_(n=0) ^∞  (z^n /z_2 ^n ))  =i(√3)Σ_(n=0) ^∞  (e^(−((2inπ)/3))  +e^((2inπ)/3) )z^n   =i(√3)Σ_(n=0) ^∞  2cos(((2nπ)/3))z^n  =2i(√3)Σ_(n=0) ^∞  cos(((2nπ)/3))e^(inx)   =2i(√3)Σ_(n=0) ^∞  cos(((2nπ)/3))(cos(nx)+isin(nx))  =2i(√3)Σ_(n=0) ^∞  cos(((2nπ)/3))cos(nx)−2(√3)Σ_(n=0) ^∞  cos(((2nπ)/3))sin(nx)  butΨ(z)=f(x) real ⇒f(x)=−2(√3)Σ_(n=0) ^∞  cos(((2nπ)/3))sin(nx)
method1f(x)=31+2cosx=31+2eix+eix2=31+eix+eix=eix=z31+z+z1=3zz+z2+1=3zz2+z+1=Ψ(z)z2+z+1=0Δ=3z1=1+i32=e2iπ3andz2=1i32=e2iπ3Ψ(z)=3z(zz1)(zz2)=3zz1z2(1zz11zz2)=3i3(zzz1zzz2)=i3(zz1+z1zz1zz2+z2zz2)=i3(z1zz1z2zz2)=i3(z1z1zz2z2z)=i3{11zz111zz2}wehavezz1∣=∣zz2∣=1Ψ(z)=i3(n=0znz1nn=0znz2n)=i3n=0(e2inπ3+e2inπ3)zn=i3n=02cos(2nπ3)zn=2i3n=0cos(2nπ3)einx=2i3n=0cos(2nπ3)(cos(nx)+isin(nx))=2i3n=0cos(2nπ3)cos(nx)23n=0cos(2nπ3)sin(nx)butΨ(z)=f(x)realf(x)=23n=0cos(2nπ3)sin(nx)

Leave a Reply

Your email address will not be published. Required fields are marked *