Menu Close

df-dt-f-t-f-t-




Question Number 1898 by 123456 last updated on 22/Oct/15
(df/dt)=αf+βt+γ  f(t)=??
dfdt=αf+βt+γf(t)=??
Answered by Yozzy last updated on 22/Oct/15
(df/dt)=αf+βt+γ   where I assume that α,β,γ are constants. This equation may be  rewritten as     (df/dt)−αf=βt+γ  (∗). The equation is a first order linear non−homogeneous  differential equation which may be solved by use of an integrating factor ψ(t).  Let ψ(t)=e^(∫−αdt) =e^(−αt) . Multiplying both sides of (∗) by ψ(t) we get                                  ψ(t)(df/dt)+ψ(t)(−α)f=ψ(t)(βt+γ)                      ⇒       e^(−αt) (df/dt)+(−αe^(−αt) )f=e^(−αt) (βt+γ)  Notice that (d/dt)(e^(−αt) f)=e^(−αt) (df/dt)+(−αe^(−αt) )f.                               ∴ (d/dt)(fe^(−αt) )=e^(−αt) (βt+γ)    (∗∗)  Integrating both sides of (∗∗) we get                                           fe^(−αt) =∫e^(−αt) (βt+γ)dt                                             f=e^(αt) ∫e^(−αt) (βt+γ)dt  By integrating by parts,          ∫e^(−αt) (βt+γ)dt=(e^(−αt) /(−α))(βt+γ)−∫(e^(−αt) /(−α))×βdt      (α≠0)                                         =((e^(−αt) (βt+γ))/(−α))+(β/α)×(e^(−αt) /(−α))+D         ∫e^(−αt) (βt+γ)dt=(e^(−αt) /(−α))(βt+γ+(β/α))+D  ∴ f=e^(αt) ((e^(−αt) /(−α))(βt+(β/α)+γ)+D)      f(t)=De^(αt) −(1/α)×((βαt+β+αγ)/α)        f(t)=De^(αt) −((βαt+β+αγ)/α^2 )  (α≠0) where D is an arbitrary constant.  Checking Solution:       (df/dt)=αDe^(αt) −(β/α)  De^(αt) =f+(β/α)t+((β+αγ)/α^2 )  ⇒(df/dt)=αf+βt+α(β/α^2 )+α×((αγ)/α^2 )−(β/α)  (df/dt)=αf+βt+γ    as given.
dfdt=αf+βt+γwhereIassumethatα,β,γareconstants.Thisequationmayberewrittenasdfdtαf=βt+γ().Theequationisafirstorderlinearnonhomogeneousdifferentialequationwhichmaybesolvedbyuseofanintegratingfactorψ(t).Letψ(t)=eαdt=eαt.Multiplyingbothsidesof()byψ(t)wegetψ(t)dfdt+ψ(t)(α)f=ψ(t)(βt+γ)eαtdfdt+(αeαt)f=eαt(βt+γ)Noticethatddt(eαtf)=eαtdfdt+(αeαt)f.ddt(feαt)=eαt(βt+γ)()Integratingbothsidesof()wegetfeαt=eαt(βt+γ)dtf=eαteαt(βt+γ)dtByintegratingbyparts,eαt(βt+γ)dt=eαtα(βt+γ)eαtα×βdt(α0)=eαt(βt+γ)α+βα×eαtα+Deαt(βt+γ)dt=eαtα(βt+γ+βα)+Df=eαt(eαtα(βt+βα+γ)+D)f(t)=Deαt1α×βαt+β+αγαf(t)=Deαtβαt+β+αγα2(α0)whereDisanarbitraryconstant.CheckingSolution:dfdt=αDeαtβαDeαt=f+βαt+β+αγα2dfdt=αf+βt+αβα2+α×αγα2βαdfdt=αf+βt+γasgiven.

Leave a Reply

Your email address will not be published. Required fields are marked *