df-dt-f-t-f-t- Tinku Tara June 3, 2023 Differential Equation 0 Comments FacebookTweetPin Question Number 1898 by 123456 last updated on 22/Oct/15 dfdt=αf+βt+γf(t)=?? Answered by Yozzy last updated on 22/Oct/15 dfdt=αf+βt+γwhereIassumethatα,β,γareconstants.Thisequationmayberewrittenasdfdt−αf=βt+γ(∗).Theequationisafirstorderlinearnon−homogeneousdifferentialequationwhichmaybesolvedbyuseofanintegratingfactorψ(t).Letψ(t)=e∫−αdt=e−αt.Multiplyingbothsidesof(∗)byψ(t)wegetψ(t)dfdt+ψ(t)(−α)f=ψ(t)(βt+γ)⇒e−αtdfdt+(−αe−αt)f=e−αt(βt+γ)Noticethatddt(e−αtf)=e−αtdfdt+(−αe−αt)f.∴ddt(fe−αt)=e−αt(βt+γ)(∗∗)Integratingbothsidesof(∗∗)wegetfe−αt=∫e−αt(βt+γ)dtf=eαt∫e−αt(βt+γ)dtByintegratingbyparts,∫e−αt(βt+γ)dt=e−αt−α(βt+γ)−∫e−αt−α×βdt(α≠0)=e−αt(βt+γ)−α+βα×e−αt−α+D∫e−αt(βt+γ)dt=e−αt−α(βt+γ+βα)+D∴f=eαt(e−αt−α(βt+βα+γ)+D)f(t)=Deαt−1α×βαt+β+αγαf(t)=Deαt−βαt+β+αγα2(α≠0)whereDisanarbitraryconstant.CheckingSolution:dfdt=αDeαt−βαDeαt=f+βαt+β+αγα2⇒dfdt=αf+βt+αβα2+α×αγα2−βαdfdt=αf+βt+γasgiven. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Lim-x-pi-2-sin-x-cos-x-x-Next Next post: f-2-x-f-x-2-2-f-2-x-stands-for-f-x-2-f-x-If-possible-solve-stepwise- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.