Menu Close

Differentiate-e-cot-x-




Question Number 29 by user1 last updated on 25/Jan/15
Differentiate   e^(√(cot x)) .
Differentiateecotx.
Answered by user2 last updated on 03/Nov/14
Let   y=e^(√(cot x))   Put cot x =t and (√(cot x))=(√t)=u, so that                      y=e^u   (dy/du)=e^u ,   (du/dt)= (1/2)t^(−1/2)   = (1/(2(√t)))   and  (dt/dx)= −cosec^2 x  so,  ((dy/dx)=(dy/du)×(du/dt)×(dt/dx)) =−(1/2)×((cosec^2 x)/(2(√t)))e^u   =((−cosec^2 x)/(2(√t)))×e(√t)               [∵ u=(√t) ]  =((−cosec^2 x)/(2(√(cot x))))×e^(√(cot x))
Lety=ecotxPutcotx=tandcotx=t=u,sothaty=eudydu=eu,dudt=12t1/2=12tanddtdx=cosec2xso,(dydx=dydu×dudt×dtdx)=12×cosec2x2teu=cosec2x2t×et[u=t]=cosec2x2cotx×ecotx