Question Number 29 by user1 last updated on 25/Jan/15
$$\mathrm{Differentiate}\:\:\:{e}^{\sqrt{\mathrm{cot}\:{x}}} . \\ $$
Answered by user2 last updated on 03/Nov/14
$$\mathrm{Let}\:\:\:{y}={e}^{\sqrt{\mathrm{cot}\:{x}}} \\ $$$$\mathrm{Put}\:\mathrm{cot}\:{x}\:={t}\:\mathrm{and}\:\sqrt{\mathrm{cot}\:{x}}=\sqrt{{t}}={u},\:\mathrm{so}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}={e}^{{u}} \\ $$$$\frac{{dy}}{{du}}={e}^{{u}} ,\:\:\:\frac{{du}}{{dt}}=\:\frac{\mathrm{1}}{\mathrm{2}}{t}^{−\mathrm{1}/\mathrm{2}} \:\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{{t}}}\: \\ $$$$\mathrm{and}\:\:\frac{{dt}}{{dx}}=\:−\mathrm{cosec}^{\mathrm{2}} {x} \\ $$$$\mathrm{so},\:\:\left(\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}×\frac{{du}}{{dt}}×\frac{{dt}}{{dx}}\right)\:=−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{cosec}^{\mathrm{2}} {x}}{\mathrm{2}\sqrt{{t}}}{e}^{{u}} \\ $$$$=\frac{−\mathrm{cosec}^{\mathrm{2}} {x}}{\mathrm{2}\sqrt{{t}}}×{e}\sqrt{{t}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\because\:{u}=\sqrt{{t}}\:\right] \\ $$$$=\frac{−\mathrm{cosec}^{\mathrm{2}} {x}}{\mathrm{2}\sqrt{\mathrm{cot}\:{x}}}×{e}^{\sqrt{\mathrm{cot}\:{x}}} \\ $$