Menu Close

differentiate-each-function-from-first-principle-1-f-x-1-1-x-2-f-x-1-2x-3-3-f-x-sin2x-4-f-x-co2x-




Question Number 11920 by carrot last updated on 05/Apr/17
differentiate each function from first principle  1)f (x) = 1+(1/x)  2)f(x) = (1/(2x+3))   3) f(x)=sin2x  4)f(x)=co2x
differentiateeachfunctionfromfirstprinciple1)f(x)=1+1x2)f(x)=12x+33)f(x)=sin2x4)f(x)=co2x
Answered by sandy_suhendra last updated on 05/Apr/17
1)f(x)=1+x^(−1)        f ′(x)=−x^(−2) =((−1)/x^2 )  2)f(x)=(2x+3)^(−1)       f ′(x)=−1(2x+3)^(−2) (2)=((−2)/((2x+3)^2 ))        3)f ′(x)=2cos2x  4)f ′(x)=−2sin2x
1)f(x)=1+x1f(x)=x2=1x22)f(x)=(2x+3)1f(x)=1(2x+3)2(2)=2(2x+3)23)f(x)=2cos2x4)f(x)=2sin2x
Commented by carrot last updated on 05/Apr/17
oh what you did was differentiate it and thats not what they asked for
ohwhatyoudidwasdifferentiateitandthatsnotwhattheyaskedfor
Commented by sandy_suhendra last updated on 06/Apr/17
oh sorry because I don′t understand with the question       but I have fixed for no 3 and 4
ohsorrybecauseIdontunderstandwiththequestionbutIhavefixedforno3and4
Answered by FilupS last updated on 05/Apr/17
(1)  f ′(x)=lim_(h→0) ((f(x+h)−f(x))/h)  f ′(x)=lim_(h→0) (((1+(1/(x+h)))−(1+(1/x)))/h)  =lim_(h→0) (((1/(x+h))−(1/x))/h)  =lim_(h→0) (((((x−x−h)/(x^2 +xh))))/h)  =lim_(h→0) (((((−h)/(x^2 +xh))))/h)  =lim_(h→0) (−(1/(x^2 +xh)))  =−(1/x^2 )
(1)f(x)=limh0f(x+h)f(x)hf(x)=limh0(1+1x+h)(1+1x)h=limh01x+h1xh=limh0(xxhx2+xh)h=limh0(hx2+xh)h=limh0(1x2+xh)=1x2
Answered by FilupS last updated on 05/Apr/17
(2)  f ′(x)=lim_(h→0) ((f(x+h)−f(x))/h)  f ′(x)=lim_(h→0) ((((1/(2x+2h+3)))−((1/(2x+3))))/h)  =lim_(h→0) ((((1/(2x+2h+3))−(1/(2x+3))))/h)  =lim_(h→0) (((((2x+3−2x−2h−3)/((2x+2h+3)(2x+3)))))/h)  =lim_(h→0) (((((−2h)/((4x^2 +6x+4hx+6h+6x+9)))))/h)  =lim_(h→0) (((((−2)/((4x^2 +6x+4hx+6h+6x+9)))))/1)  =−(2/(4x^2 +12x+9))  =−(2/((2x+3)^2 ))
(2)f(x)=limh0f(x+h)f(x)hf(x)=limh0(12x+2h+3)(12x+3)h=limh0(12x+2h+312x+3)h=limh0(2x+32x2h3(2x+2h+3)(2x+3))h=limh0(2h(4x2+6x+4hx+6h+6x+9))h=limh0(2(4x2+6x+4hx+6h+6x+9))1=24x2+12x+9=2(2x+3)2
Answered by sandy_suhendra last updated on 06/Apr/17
3) lim_(h→0) ((sin2(x+h)−sin2x)/h)  =lim_(h→0) ((2cos(2x+h) sin h)/h)  =lim_(h→0)  2cos(2x+h) ((sin h)/h)  =2cos(2x+0).1=2cos2x    4)lim_(h→0) ((cos2(x+h)−cos2x)/h)  =lim_(x→0)  ((−2sin(2x+h) sin h)/h)  =lim_(x→0)  −2sin(2x+h) ((sin h)/h)  =−2sin(2x+0).1=−2sin2x
3)limh0sin2(x+h)sin2xh=limh02cos(2x+h)sinhh=limh02cos(2x+h)sinhh=2cos(2x+0).1=2cos2x4)limh0cos2(x+h)cos2xh=limx02sin(2x+h)sinhh=limx02sin(2x+h)sinhh=2sin(2x+0).1=2sin2x

Leave a Reply

Your email address will not be published. Required fields are marked *