Differentiate-from-the-first-principle-y-tan2x- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 9306 by tawakalitu last updated on 29/Nov/16 Differentiatefromthefirstprinciple:y=tan2x Answered by mrW last updated on 30/Nov/16 y(x)=tan(2x)y(x+h)=tan(2x+2h)=tan(2x)+tan(2h)1−tan(2x)×tan(2h)y(x+h)−y(x)=tan(2x)+tan(2h)1−tan(2x)×tan(2h)−tan(2x)=tan(2x)+tan(2h)−tan(2x)+tan2(2x)×tan(2h)1−tan(2x)×tan(2h)=1+tan2(2x)1tan(2h)−tan(2x)y(x+h)−y(x)h=1+tan2(2x)htan(2h)−tan(2x)×hlimh→0htan(2h)=limh→012×tan(2h)2h=12limh→0tan(2x)×h=0dydx=limh→0y(x+h)−y(x)h=1+tan2(2x)12=2[1+tan2(2x)]=2cos2(2x) Commented by tawakalitu last updated on 29/Nov/16 Thankssir.Godblessyou. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-74840Next Next post: sin-10-x-cos-10-x-61-256- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.