Menu Close

Differentiate-from-the-first-principle-y-tan2x-




Question Number 9306 by tawakalitu last updated on 29/Nov/16
Differentiate from the first principle:  y = tan2x
Differentiatefromthefirstprinciple:y=tan2x
Answered by mrW last updated on 30/Nov/16
y(x)=tan (2x)  y(x+h)=tan (2x+2h)=((tan (2x)+tan (2h))/(1−tan (2x)×tan (2h)))  y(x+h)−y(x)=((tan (2x)+tan (2h))/(1−tan (2x)×tan (2h)))−tan (2x)  =((tan (2x)+tan (2h)−tan (2x)+tan^2 (2x)×tan (2h))/(1−tan (2x)×tan (2h)))    =((1+tan^2 (2x))/((1/(tan (2h)))−tan (2x)))    ((y(x+h)−y(x))/h)=((1+tan^2 (2x))/((h/(tan (2h)))−tan (2x)×h))  lim_(h→0)  (h/(tan (2h)))=lim_(h→0)  (1/(2×((tan (2h))/(2h))))=(1/2)  lim_(h→0)  tan (2x)×h=0  (dy/dx)=lim_(h→0) ((y(x+h)−y(x))/h)=((1+tan^2 (2x))/(1/2))=2[1+tan^2 (2x)]=(2/(cos^2 (2x)))
y(x)=tan(2x)y(x+h)=tan(2x+2h)=tan(2x)+tan(2h)1tan(2x)×tan(2h)y(x+h)y(x)=tan(2x)+tan(2h)1tan(2x)×tan(2h)tan(2x)=tan(2x)+tan(2h)tan(2x)+tan2(2x)×tan(2h)1tan(2x)×tan(2h)=1+tan2(2x)1tan(2h)tan(2x)y(x+h)y(x)h=1+tan2(2x)htan(2h)tan(2x)×hlimh0htan(2h)=limh012×tan(2h)2h=12limh0tan(2x)×h=0dydx=limh0y(x+h)y(x)h=1+tan2(2x)12=2[1+tan2(2x)]=2cos2(2x)
Commented by tawakalitu last updated on 29/Nov/16
Thanks sir. God bless you.
Thankssir.Godblessyou.

Leave a Reply

Your email address will not be published. Required fields are marked *