Question Number 11843 by tawa last updated on 02/Apr/17
$$\mathrm{Differentiate},\:\:\mathrm{ln}\left(\mathrm{cosx}\right)\:\:\:\mathrm{from}\:\mathrm{the}\:\mathrm{first}\:\mathrm{principle}. \\ $$
Answered by ajfour last updated on 02/Apr/17
$$\frac{{d}}{{dx}}\mathrm{ln}\:\left(\mathrm{cos}\:{x}\right)=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\mathrm{cos}\:\left({x}+{h}\right)−\mathrm{ln}\:\mathrm{cos}\:{x}}{{h}} \\ $$$$\:=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left[\:\frac{\mathrm{cos}\:\left({x}+{h}\right)}{\mathrm{cos}\:{x}}\:\right]}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left[\frac{\mathrm{cos}\:{x}\mathrm{cos}\:{h}−\mathrm{sin}\:{x}\mathrm{sin}\:{h}}{\mathrm{cos}\:{x}}\:\right]}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left[\mathrm{cos}\:{h}−\mathrm{tan}\:{x}\mathrm{sin}\:{h}\:\right]}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\:\frac{\mathrm{ln}\:\left[\mathrm{1}−\mathrm{tan}\:{x}\mathrm{sin}\:{h}\:\right]}{−\mathrm{tan}\:{x}\mathrm{sin}\:{h}}.\frac{\left(−\mathrm{tan}\:{x}\mathrm{sin}\:{h}\right)}{{h}}\right\} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\:\left(\mathrm{1}+{t}\right)}{{t}}.\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(−\mathrm{tan}\:{x}\right).\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{sin}\:{h}}{{h}}\right) \\ $$$$=\:\:\left(\mathrm{1}\right)\left(−\mathrm{tan}\:{x}\right)\left(\mathrm{1}\right)\:\:=\:−\mathrm{tan}\:{x}\:. \\ $$
Commented by tawa last updated on 02/Apr/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$