Question Number 5672 by sanusihammed last updated on 23/May/16

Answered by Yozzii last updated on 23/May/16
![Let y=((lnx)/e^x ). From first principles (dy/dx)=lim_(h→0) ((f(x+h)−f(x))/h) =lim_(h→0) ((e^(−x−h) ln(x+h)−e^(−x) lnx)/h) =lim_(h→0) (((ln(x+h))/(he^(x+h) ))−((lnx)/(he^x ))) =lim_(h→0) ((ln(x+h)−e^h lnx)/(he^x e^h )) =e^(−x) lim_(h→0) (1/(he^h ))(ln(x+h)−lnx^e^h ) =e^(−x) lim_(h→0) (1/(he^h ))ln((x+h)/x^e^h ) (dy/dx)=e^(−x) lim_(h→0) ln(x^(1−e^h ) +(h/x^e^h ))^(1/he^h ) ln(dy/dx)=ln{e^(−x) }+ln(lim_(h→0) {(1/e^h )ln[(x^(1−e^h ) +(h/x^e^h ))^(1/h) ]}) ln(dy/dx)=−x+ln(lim_(h→0) (1/h)lnx^(1−e^h ) (1+(h/x))) ln(dy/dx)=−x+ln(lim_(h→0) (((1−e^h )/h)lnx+(1/h)ln(1+(h/x)))) • e is a number such that for u being any number, e^u =1+u+(u^2 /(2!))+(u^3 /(3!))+...+(u^n /(n!))+... • For j∈(−1,1] one can write ln(1+j)=j−(j^2 /2)+(j^3 /3)−(j^4 /4)+...+(((−1)^(n+1) j^n )/n)+... ∴ ln(dy/dx)=−x+ln{(lnx)lim_(h→0) (1/h)(1−1−h−(h^2 /(2!))−(h^3 /(3!))−...)+lim_(h→0) (1/h)((h/x)−(h^2 /(2x^2 ))+(h^3 /(3x^3 ))−...)} ln(dy/dx)=−x+ln{(lnx)lim_(h→0) (−1−(h/(2!))−(h^2 /(3!))−...)+lim_(h→0) ((1/x)−(h/(2x^2 ))+(h^2 /(3x^3 ))−...)} ln(dy/dx)=−x+ln{(lnx)(−1)+(1/x)} (dy/dx)=exp(−x+ln(x^(−1) −lnx))=e^(−x) ×(x^(−1) −lnx)](https://www.tinkutara.com/question/Q5676.png)
Commented by sanusihammed last updated on 24/May/16

Commented by sanusihammed last updated on 24/May/16

Commented by Yozzii last updated on 23/May/16
