Menu Close

Differentiate-lnx-e-x-fom-the-first-principle-Please-help-me-




Question Number 5672 by sanusihammed last updated on 23/May/16
Differentiate    ((lnx)/e^x )    fom the first principle.    Please help me.
Differentiatelnxexfomthefirstprinciple.Pleasehelpme.
Answered by Yozzii last updated on 23/May/16
Let y=((lnx)/e^x ). From first principles  (dy/dx)=lim_(h→0) ((f(x+h)−f(x))/h)  =lim_(h→0) ((e^(−x−h) ln(x+h)−e^(−x) lnx)/h)  =lim_(h→0) (((ln(x+h))/(he^(x+h) ))−((lnx)/(he^x )))  =lim_(h→0) ((ln(x+h)−e^h lnx)/(he^x e^h ))  =e^(−x) lim_(h→0) (1/(he^h ))(ln(x+h)−lnx^e^h  )  =e^(−x) lim_(h→0) (1/(he^h ))ln((x+h)/x^e^h  )  (dy/dx)=e^(−x) lim_(h→0) ln(x^(1−e^h ) +(h/x^e^h  ))^(1/he^h )   ln(dy/dx)=ln{e^(−x) }+ln(lim_(h→0) {(1/e^h )ln[(x^(1−e^h ) +(h/x^e^h  ))^(1/h) ]})  ln(dy/dx)=−x+ln(lim_(h→0) (1/h)lnx^(1−e^h ) (1+(h/x)))  ln(dy/dx)=−x+ln(lim_(h→0) (((1−e^h )/h)lnx+(1/h)ln(1+(h/x))))    • e is a number such that for u being  any number, e^u =1+u+(u^2 /(2!))+(u^3 /(3!))+...+(u^n /(n!))+...  • For j∈(−1,1] one can write  ln(1+j)=j−(j^2 /2)+(j^3 /3)−(j^4 /4)+...+(((−1)^(n+1) j^n )/n)+...    ∴ ln(dy/dx)=−x+ln{(lnx)lim_(h→0) (1/h)(1−1−h−(h^2 /(2!))−(h^3 /(3!))−...)+lim_(h→0) (1/h)((h/x)−(h^2 /(2x^2 ))+(h^3 /(3x^3 ))−...)}  ln(dy/dx)=−x+ln{(lnx)lim_(h→0) (−1−(h/(2!))−(h^2 /(3!))−...)+lim_(h→0) ((1/x)−(h/(2x^2 ))+(h^2 /(3x^3 ))−...)}  ln(dy/dx)=−x+ln{(lnx)(−1)+(1/x)}  (dy/dx)=exp(−x+ln(x^(−1) −lnx))=e^(−x) ×(x^(−1) −lnx)
Lety=lnxex.Fromfirstprinciplesdydx=limh0f(x+h)f(x)h=limh0exhln(x+h)exlnxh=limh0(ln(x+h)hex+hlnxhex)=limh0ln(x+h)ehlnxhexeh=exlimh01heh(ln(x+h)lnxeh)=exlimh01hehlnx+hxehdydx=exlimh0ln(x1eh+hxeh)1/hehlndydx=ln{ex}+ln(limh0{1ehln[(x1eh+hxeh)1/h]})lndydx=x+ln(limh01hlnx1eh(1+hx))lndydx=x+ln(limh0(1ehhlnx+1hln(1+hx)))eisanumbersuchthatforubeinganynumber,eu=1+u+u22!+u33!++unn!+Forj(1,1]onecanwriteln(1+j)=jj22+j33j44++(1)n+1jnn+lndydx=x+ln{(lnx)limh01h(11hh22!h33!)+limh01h(hxh22x2+h33x3)}lndydx=x+ln{(lnx)limh0(1h2!h23!)+limh0(1xh2x2+h23x3)}lndydx=x+ln{(lnx)(1)+1x}dydx=exp(x+ln(x1lnx))=ex×(x1lnx)
Commented by sanusihammed last updated on 24/May/16
This is great . wow.
Thisisgreat.wow.
Commented by sanusihammed last updated on 24/May/16
Thanks so much.
Thankssomuch.
Commented by Yozzii last updated on 23/May/16
Alternatively, one could prove the  quotient rule from first principles  and subsequently apply it.     Let r(x)=((u(x))/(v(x))) where u and v are functions  of x and v(x)≠0.  ∴ r(x+h)=((u(x+h))/(v(x+h)))     (h=δx)  ∴r(x+h)−r(x)=((u(x+h))/(v(x+h)))−((u(x))/(v(x)))=δr(x)  =((v(x)(u(x+h)−u(x)+u(x))−u(x)(v(x+h)−v(x)+v(x)))/(v(x+h)v(x)))  δr(x)=((v(x)δu(x)+v(x)u(x)−u(x)δv(x)−u(x)v(x))/(v(x+h)v(x)))  δr(x)=((v(x)δu(x)−u(x)δv(x))/(v(x+δx)v(x)))  By definition of the derivative,  (dr/dx)=lim_(δx→0) ((δr(x))/(δx))=lim_(δx→0) (1/(δx))(((v(x)δu(x)−u(x)δv(x))/(v(x+δx)v(x))))  (dr/dx)=lim_(δx→0) ((v(x)((δu(x))/(δx))−u(x)((δv(x))/(δx)))/(v(x+δx)v(x)))  Since v(x)≠0 for all x∈R, by the algebra  of limits,  ⇒(dr/dx)=((lim_(δx→0) (v(x)((δu(x))/(δx))−u(x)((δv(x))/(δx))))/(lim_(δx→0) {v(x+δx)v(x)}))  (dr/dx)=((v(x)(lim_(δx→0) ((δu(x))/(δx)))−u(x)(lim_(δx→0) ((δv(x))/(δx))))/(lim_(δx→0) {v(x+δx)v(x)}))  Now, we substitute the following results:  lim_(δx→0) ((δu(x))/(δx))=(du/dx), lim_(δx→0) ((δv(x))/(δx))=(dv/dx)   &   lim_(δx→0) {v(x+δx)v(x)}=v(x+0)v(x)=v^2 (x).  ∴(dr/dx)=((v(x)(du/dx)−u(x)(dv/dx))/(v^2 (x)))                                        □    So, if r(x)=((lnx)/e^x )  ⇒(dr/dx)=((e^x x^(−1) −e^x lnx)/e^(2x) )=((x^(−1) −lnx)/e^x ).
Alternatively,onecouldprovethequotientrulefromfirstprinciplesandsubsequentlyapplyit.Letr(x)=u(x)v(x)whereuandvarefunctionsofxandv(x)0.r(x+h)=u(x+h)v(x+h)(h=δx)r(x+h)r(x)=u(x+h)v(x+h)u(x)v(x)=δr(x)=v(x)(u(x+h)u(x)+u(x))u(x)(v(x+h)v(x)+v(x))v(x+h)v(x)δr(x)=v(x)δu(x)+v(x)u(x)u(x)δv(x)u(x)v(x)v(x+h)v(x)δr(x)=v(x)δu(x)u(x)δv(x)v(x+δx)v(x)Bydefinitionofthederivative,drdx=limδx0δr(x)δx=limδx01δx(v(x)δu(x)u(x)δv(x)v(x+δx)v(x))drdx=limδx0v(x)δu(x)δxu(x)δv(x)δxv(x+δx)v(x)Sincev(x)0forallxR,bythealgebraoflimits,drdx=limδx0(v(x)δu(x)δxu(x)δv(x)δx)limδx0{v(x+δx)v(x)}drdx=v(x)(limδx0δu(x)δx)u(x)(limδx0δv(x)δx)limδx0{v(x+δx)v(x)}Now,wesubstitutethefollowingresults:limδx0δu(x)δx=dudx,limδx0δv(x)δx=dvdx&limδx0{v(x+δx)v(x)}=v(x+0)v(x)=v2(x).drdx=v(x)dudxu(x)dvdxv2(x)So,ifr(x)=lnxexdrdx=exx1exlnxe2x=x1lnxex.

Leave a Reply

Your email address will not be published. Required fields are marked *