Menu Close

Differentiate-s-ut-1-2-at-2-from-the-first-principle-




Question Number 6152 by sanusihammed last updated on 16/Jun/16
Differentiate   s = ut + (1/2)at^2       from the first principle
Differentiates=ut+12at2fromthefirstprinciple
Answered by Rasheed Soomro last updated on 16/Jun/16
s = ut + (1/2)at^2      s+δs=u(t+δt)+(1/2)a(t+δt)^2   δs=(u(t+δt)+(1/2)a(t+δt)^2 )−(ut + (1/2)at^2 )     =u(t+δt)+(1/2)a(t+δt)^2 −ut − (1/2)at^2        =u(t+δt−t)+(1/2)a(t^2 +2t δt+δt^2 −t^2 )       =u δt+(1/2)a(2t δt+δt^2 )  ((δs)/(δt))=u+at+(1/2)aδt  lim_(δt→0) ((δs)/(δt))=lim_(δt→0) (u+at+(1/2)aδt)  (ds/dt)=u+at
s=ut+12at2s+δs=u(t+δt)+12a(t+δt)2δs=(u(t+δt)+12a(t+δt)2)(ut+12at2)=u(t+δt)+12a(t+δt)2ut12at2=u(t+δtt)+12a(t2+2tδt+δt2t2)=uδt+12a(2tδt+δt2)δsδt=u+at+12aδtlimδt0δsδt=limδt0(u+at+12aδt)dsdt=u+at
Answered by FilupSmith last updated on 16/Jun/16
f(t)=ut+(1/2)at^2   f(t+h)=u(t+h)+(1/2)a(t+h)^2     f ′(t)=lim_(h→0)  ((f(t+h)−f(t))/h)  f ′(t)=lim_(h→0)  (((u(t+h)+(1/2)a(t+h)^2 )−(ut+(1/2)at^2 ))/h)  f ′(t)=lim_(h→0)  ((u(t+h−t)+(1/2)a((t+h)^2 −t^2 ))/h)  f ′(t)=lim_(h→0)  ((u(h)+(1/2)a(t^2 +2th+h^2 −t^2 ))/h)  f ′(t)=lim_(h→0)  ((uh+(1/2)a(2th+h^2 ))/h)  f ′(t)=lim_(h→0)  ((uh+(1/2)ah(2t+h))/h)  f ′(t)=lim_(h→0)  (u+(1/2)a(2t+h))  f ′(t)=u+(1/2)a(2t)    ∴ f ′(t)=u+at
f(t)=ut+12at2f(t+h)=u(t+h)+12a(t+h)2f(t)=limh0f(t+h)f(t)hf(t)=limh0(u(t+h)+12a(t+h)2)(ut+12at2)hf(t)=limh0u(t+ht)+12a((t+h)2t2)hf(t)=limh0u(h)+12a(t2+2th+h2t2)hf(t)=limh0uh+12a(2th+h2)hf(t)=limh0uh+12ah(2t+h)hf(t)=limh0(u+12a(2t+h))f(t)=u+12a(2t)f(t)=u+at
Commented by FilupSmith last updated on 16/Jun/16
added this as a different notation
addedthisasadifferentnotation
Commented by sanusihammed last updated on 16/Jun/16
Thank you
Thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *