Differentiate-sin-x-from-the-first-principle- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 9231 by tawakalitu last updated on 24/Nov/16 Differentiate:sinxfromthefirstprinciple. Answered by mrW last updated on 29/Nov/16 y(x)=sinxy(x+h)=sinx+hy(x+h)−y(x)h=sinx+h−sinxh=2×cosx+h+x2×sinx+h−x2h=2×cosx+h+x2×sinx+h−x2hletu=x+h−x2x+h−x=2ux+h=2u+xh=(2u+x)2−(x)2=4u(u+x)sinx+h−x2h=sinu4u(u+x)=14×sinuu×1u+xwithh→0,u→0limh→0sinx+h−x2h=14×limu→0sinuu×limu→01u+x=14×1×1x=14xdydx=limh→0y(x+h)−y(x)h=limh→0[2×cosx+h+x2×sinx+h−x2h]=2×limcosh→0x+h+x2×limh→0sinx+h−x2h=2×cosx×14x=cosx2x Commented by tawakalitu last updated on 29/Nov/16 Thankssomuch.Godblessyou. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-that-a-2i-3j-k-b-4i-j-3k-c-i-3k-Find-a-b-c-a-b-c-Next Next post: 1-2-3-4-n-n-n-1-2-1-2-2-2-3-2-n-2-n-n-1-2n-1-6-1-x-2-x-3-x-n-x-Formula-x-R- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.