Menu Close

Differentiate-sin-x-from-the-first-principle-




Question Number 9231 by tawakalitu last updated on 24/Nov/16
Differentiate :  sin(√x)    from the  first principle.
Differentiate:sinxfromthefirstprinciple.
Answered by mrW last updated on 29/Nov/16
y(x)=sin (√x)  y(x+h)=sin (√(x+h))  ((y(x+h)−y(x))/h)=((sin (√(x+h))−sin (√x))/h)  =((2×cos (((√(x+h))+(√x))/2)×sin (((√(x+h))−(√x))/2))/h)  =2×cos (((√(x+h))+(√x))/2)×((sin (((√(x+h))−(√x))/2))/h)    let u=(((√(x+h))−(√x))/2)  (√(x+h))−(√x)=2u  (√(x+h))=2u+(√x)  h=(2u+(√x))^2 −((√x))^2 =4u(u+(√x))    ((sin (((√(x+h))−(√x))/2))/h)=((sin u)/(4u(u+(√(x)))))=(1/4)×((sin u)/u)×(1/(u+(√x)))    with h→0, u→0  lim_(h→0) ((sin (((√(x+h))−(√x))/2))/h)=(1/4)×lim_(u→0) ((sin u)/u)×lim_(u→0) (1/( u+(√x) ))=(1/4)×1×(1/( (√x)))=(1/(4(√x)))    (dy/dx)=lim_(h→0) ((y(x+h)−y(x))/h)  =lim_(h→0) [2×cos (((√(x+h))+(√x))/2)×((sin (((√(x+h))−(√x))/2))/h)]  =2×lim_(h→0) cos (((√(x+h))+(√x))/2)×lim_(h→0) ((sin (((√(x+h))−(√x))/2))/h)  =2×cos (√x)×(1/(4(√x)))=((cos (√x))/(2(√x)))
y(x)=sinxy(x+h)=sinx+hy(x+h)y(x)h=sinx+hsinxh=2×cosx+h+x2×sinx+hx2h=2×cosx+h+x2×sinx+hx2hletu=x+hx2x+hx=2ux+h=2u+xh=(2u+x)2(x)2=4u(u+x)sinx+hx2h=sinu4u(u+x)=14×sinuu×1u+xwithh0,u0limh0sinx+hx2h=14×limu0sinuu×limu01u+x=14×1×1x=14xdydx=limh0y(x+h)y(x)h=limh0[2×cosx+h+x2×sinx+hx2h]=2×limcosh0x+h+x2×limh0sinx+hx2h=2×cosx×14x=cosx2x
Commented by tawakalitu last updated on 29/Nov/16
Thanks so much. God bless you.
Thankssomuch.Godblessyou.

Leave a Reply

Your email address will not be published. Required fields are marked *