Differentiate-x-x-from-the-first-principle-please-help- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 5715 by sanusihammed last updated on 24/May/16 Differentiatexxfromthefirstprinciple.pleasehelp Answered by Yozzii last updated on 25/May/16 Lety=xx.Ifx>0wecanwritelny=lnxx=xlnx.Keepinmindthatyisafunctionofx.Todifferentiatetheequationwithrespecttox,weneedtofindddx(lny)andddx(xlnx).Letlny=u.Then,byfirstprinciples,dudy=limδy→0δuδy=limδy→0ln(y+δy)−lnyδydudy=limδy→0ln(1+δyy)δy=limδy→0ln(1+δyy)1/δyLetk=δy/y⇒δy=ykdudy=limk→0(1+u)1/(yk)=1y{limk→0ln(1+k)1/k}letk=1/n.∴dudy=1y{limn→∞ln(1+1n)n}=1yln{limn→∞(1+n−1)n}=1ylne⇒dudy=1/y…….(1)Now,dudx=dudy×dydxaccordingtothechainrule.PROOF:Fromfirstprinciplesdudx=limδx→0δuδx=limδx→0(δuδy×δyδx)=(limδx→0δuδy)(limδx→0δyδx)Ify=f(x)suchthatδy=f(x+δx)−f(x)⇒asδx→0,f(x+δx)−f(x)→0orδy→0.∴limδx→0δuδy=limδy→0δuδy=dudyandlimδx→0δyδx=dydx.⇒dudx=dudy×dydx.∴dudx=d(lny)dx=d(lny)dy×dydx=1y∙dydx.Now,d(xlnx)dx=limδx→0(x+δx)ln(x+δx)−xlnxδx=limδx→0xln(x+δx)−xlnx+δxln(x+δx)δx=limδx→0{xδxln(1+δxx)+ln(x+δx)}=x{limδx→01δxln(1+δxx)}+ln(x+0)Wejustfoundtheresultoflimδy→01δyln(1+δyy)=1yfrom(1).Hence,similarlylimδx→01δxln(1+δxx)=1x.⇒d(xlnx)dx=x×1x+lnx=1+lnx(x>0)∴1y×dydx=1+lnx⇒dydx=y(1+lnx)=xx(1+lnx) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: a-b-R-a-b-n-k-0-n-n-k-a-k-b-n-k-demontration-Next Next post: Two-angles-can-be-added-and-subtracted-Can-we-multiply-them-also-For-example-x-radians-y-radians-xy-radians-2-What-will-be-the-meaning-of-radians-2-square-radians- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.