Menu Close

Differentiate-x-x-from-the-first-principle-please-help-




Question Number 5715 by sanusihammed last updated on 24/May/16
Differentiate   x^x    from the first principle.    please help
Differentiatexxfromthefirstprinciple.pleasehelp
Answered by Yozzii last updated on 25/May/16
Let y=x^x . If x>0 we can write  lny=lnx^x =xlnx. Keep in mind that  y is a function of x. To differentiate  the equation with respect to x, we need to find  (d/dx)(lny)  and  (d/dx)(xlnx).  Let lny=u. Then, by first principles,  (du/dy)=lim_(δy→0) ((δu)/(δy))=lim_(δy→0) ((ln(y+δy)−lny)/(δy))  (du/dy)=lim_(δy→0) ((ln(1+((δy)/y)))/(δy))=lim_(δy→0) ln(1+((δy)/y))^(1/δy)     Let k=δy/y⇒δy=yk  (du/dy)=lim_(k→0) (1+u)^(1/(yk)) =(1/y){lim_(k→0) ln(1+k)^(1/k) }  let k=1/n.  ∴(du/dy)=(1/y){lim_(n→∞) ln(1+(1/n))^n }=(1/y)ln{lim_(n→∞) (1+n^(−1) )^n }=(1/y)lne  ⇒(du/dy)=1/y.......(1)    Now, (du/dx)=(du/dy)×(dy/dx) according to the chain rule.  PROOF: From first principles  (du/dx)=lim_(δx→0) ((δu)/(δx))=lim_(δx→0) (((δu)/(δy))×((δy)/(δx)))=(lim_(δx→0) ((δu)/(δy)))(lim_(δx→0) ((δy)/(δx)))  If y=f(x) such that δy=f(x+δx)−f(x)  ⇒ as δx→0, f(x+δx)−f(x)→0 or δy→0.  ∴ lim_(δx→0) ((δu)/(δy))=lim_(δy→0) ((δu)/(δy))=(du/dy) and lim_(δx→0) ((δy)/(δx))=(dy/dx).  ⇒(du/dx)=(du/dy)×(dy/dx).                                            □    ∴ (du/dx)=((d(lny))/dx)=((d(lny))/dy)×(dy/dx)=(1/y)•(dy/dx).  Now,  ((d(xlnx))/dx)=lim_(δx→0) (((x+δx)ln(x+δx)−xlnx)/(δx))                   =lim_(δx→0) ((xln(x+δx)−xlnx+δxln(x+δx))/(δx))                   =lim_(δx→0) {(x/(δx))ln(1+((δx)/x))+ln(x+δx)}                   =x{lim_(δx→0) (1/(δx))ln(1+((δx)/x))}+ln(x+0)  We just found the result of lim_(δy→0) (1/(δy))ln(1+((δy)/y))=(1/y) from (1).  Hence, similarly lim_(δx→0) (1/(δx))ln(1+((δx)/x))=(1/x).  ⇒((d(xlnx))/dx)=x×(1/x)+lnx=1+lnx (x>0)  ∴(1/y)×(dy/dx)=1+lnx⇒(dy/dx)=y(1+lnx)=x^x (1+lnx)
Lety=xx.Ifx>0wecanwritelny=lnxx=xlnx.Keepinmindthatyisafunctionofx.Todifferentiatetheequationwithrespecttox,weneedtofindddx(lny)andddx(xlnx).Letlny=u.Then,byfirstprinciples,dudy=limδy0δuδy=limδy0ln(y+δy)lnyδydudy=limδy0ln(1+δyy)δy=limδy0ln(1+δyy)1/δyLetk=δy/yδy=ykdudy=limk0(1+u)1/(yk)=1y{limk0ln(1+k)1/k}letk=1/n.dudy=1y{limnln(1+1n)n}=1yln{limn(1+n1)n}=1ylnedudy=1/y.(1)Now,dudx=dudy×dydxaccordingtothechainrule.PROOF:Fromfirstprinciplesdudx=limδx0δuδx=limδx0(δuδy×δyδx)=(limδx0δuδy)(limδx0δyδx)Ify=f(x)suchthatδy=f(x+δx)f(x)asδx0,f(x+δx)f(x)0orδy0.limδx0δuδy=limδy0δuδy=dudyandlimδx0δyδx=dydx.dudx=dudy×dydx.◻dudx=d(lny)dx=d(lny)dy×dydx=1ydydx.Now,d(xlnx)dx=limδx0(x+δx)ln(x+δx)xlnxδx=limδx0xln(x+δx)xlnx+δxln(x+δx)δx=limδx0{xδxln(1+δxx)+ln(x+δx)}=x{limδx01δxln(1+δxx)}+ln(x+0)Wejustfoundtheresultoflimδy01δyln(1+δyy)=1yfrom(1).Hence,similarlylimδx01δxln(1+δxx)=1x.d(xlnx)dx=x×1x+lnx=1+lnx(x>0)1y×dydx=1+lnxdydx=y(1+lnx)=xx(1+lnx)

Leave a Reply

Your email address will not be published. Required fields are marked *