Menu Close

dilogarithm-integral-calculate-0-1-li-2-1-x-2-dx-




Question Number 135055 by mnjuly1970 last updated on 09/Mar/21
            ....dilogarithm   integral....           calculate:::               ๐›—=โˆซ_0 ^( 1) li_2 (1โˆ’x^2 )dx=?
โ€ฆ.dilogarithmintegralโ€ฆ.calculate:::ฯ•=โˆซ01li2(1โˆ’x2)dx=?
Answered by ร‘รฏ= last updated on 10/Mar/21
โˆซ_0 ^1 Li_2 (1โˆ’x^2 )dx=xLi_2 (1โˆ’x^2 )โˆฃ_0 ^1 โˆ’โˆซ_0 ^1 4x^2 โˆ™((lnx)/(1โˆ’x^2 ))dx  =4โˆซ_0 ^1 (1โˆ’(1/(1โˆ’x^2 )))lnxdx=4โˆซ_0 ^1 lnxdxโˆ’4โˆซ_0 ^1 ((lnx)/(1โˆ’x^2 ))dx  =4(xlnxโˆ’x)โˆฃ_0 ^1 โˆ’4[(1/2)ln((1+x)/(1โˆ’x))lnxโˆฃ_0 ^1 โˆ’(1/2)โˆซ_0 ^1 ((ln(1+x)โˆ’ln(1โˆ’x))/x)dx]  =โˆ’4+2โˆซ_0 ^1 ((ln(1+x)โˆ’ln(1โˆ’x))/x)dx  =โˆ’4+2[โˆ’Li_2 (โˆ’1)+Li_2 (1)]  =โˆ’4+3Li_2 (1)  =(ฯ€^2 /2)โˆ’4
โˆซ01Li2(1โˆ’x2)dx=xLi2(1โˆ’x2)โˆฃ01โˆ’โˆซ014x2โ‹…lnx1โˆ’x2dx=4โˆซ01(1โˆ’11โˆ’x2)lnxdx=4โˆซ01lnxdxโˆ’4โˆซ01lnx1โˆ’x2dx=4(xlnxโˆ’x)โˆฃ01โˆ’4[12ln1+x1โˆ’xlnxโˆฃ01โˆ’12โˆซ01ln(1+x)โˆ’ln(1โˆ’x)xdx]=โˆ’4+2โˆซ01ln(1+x)โˆ’ln(1โˆ’x)xdx=โˆ’4+2[โˆ’Li2(โˆ’1)+Li2(1)]=โˆ’4+3Li2(1)=ฯ€22โˆ’4
Commented by mnjuly1970 last updated on 10/Mar/21
 very nice very nice   with the thanking...
veryniceverynicewiththethankingโ€ฆ

Leave a Reply

Your email address will not be published. Required fields are marked *